Contributions to Mineralogy and Petrology

, Volume 153, Issue 3, pp 339–353 | Cite as

Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia

  • A. G. Doroshkevich
  • F. WallEmail author
  • G. S. Ripp
Original Paper


A recently discovered dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia, dated at 624 ± 3 Ma, contains xenoliths of calcite-bearing dolomite carbonatite with graphite spherulites. Apatite and aegirine are the other rock-forming minerals. Chemically the carbonatites are ferrocarbonatite and ferruginous calciocarbonatite. The graphite forms <1 mm up to 1.5 mm diameter spherulites, with Raman spectra similar to published spectra of microcrystalline, amorphous carbon and disordered graphite, with G and D bands at 1,580−1,600 cm−1 and at around 1,350 cm−1. Alteration has formed Fe-bearing calcite to Ca-bearing siderite compositions not previously reported in nature around the graphite along cracks and fractures. Mineral and stable isotope geothermometers and melt inclusion measurements for the carbonatite all give temperatures of 700°–900°. It is concluded that the graphite precipitated from the ferrocarbonatite magma. There are three candidates to control the precipitation of graphite (a) a redox reaction with FeII in the magma, (b) potential presence of organics in the magma (c) seeding of, or dissolution in, the magma of graphite/diamond from the mantle, and further work is required to identify the most important mechanism(s). Graphite in carbonatite is rare, with no substantial published accounts since the 1960s but graphite at other localities seems also to have precipitated from carbonatite magma. The precipitation of reduced carbon from carbonatite provides further evidence that diamond formation in carbonate melts at high mantle pressures is feasible.


Dolomite carbonatite Graphite Transbaikalia 



We are grateful to Tony Wighton, John Spratt, Anton Kearsley and Terry Williams for help with analysis at the NHM (UK), Nikolay Karmanov and Sergey Kanakin for help with analysis at the Geological Institute SB RAS (Russia), Professor A.H. Rankin and Ms B. Beeskow for using the laser Raman equipment at Kingston University, UK. Ken Bailey, Alan Woolley, Ilya Veksler are thanked for useful discussions and information. Chris Stanley, Andy Fleet and Polly Hutchison helped to improve the text. Reviews by Keith Bell and an anonymous reviewer much improved the paper. The studies have been carried out with the support of the RFFR (grant 03-05-65270), Russian Science Support Foundation, Fund of Leading Scientific Schools of Russian Federation (NSch-2284.2003), a Royal Society (UK) incoming international short visit and INTAS grant 05-1000008-7938. This paper contributes to the list of ‘CERCAMS’ publications from The Natural History Museum.


  1. Akaishi M, Kanda H, Yamaoka S (2000) Crystallization of diamond from C-O-H fluids under high-pressure and high-temperature conditions. J Cryst Growth 209:999–1003CrossRefGoogle Scholar
  2. Alberti A, Castorina F, Censi P, Comin-Chiaramonti P, Gomes CB (1999) Geochemical characteristics of Cretaceous carbonatites from Angola. J Afr Earth Sci 29:735–759CrossRefGoogle Scholar
  3. Bell K, Blenkinsop J (1989) Nd and Sr isotope geochemistry of carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 278–300Google Scholar
  4. Bobrov AV, Litvin YuA, Divaev FK (2004) Phase relations and diamond synthesis in the carbonate of the Chagatai complex, Western Uzbekistan: results of P=4–7 GPa and T=1200–1700C. Geochem Int 42:39–48Google Scholar
  5. Cartigny P, De Corte K, Shatsky VS, Ader M, De Paepe P, Sobolev NV, Javoy M (2001) The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: a nitrogen and carbon isotopic study. Chem Geol 176:265–281CrossRefGoogle Scholar
  6. Chiba H, Chacko T, Clayton RN, Goldsmidth JR (1989) Oxygen isotope fractionations involving diopside, forsterite and calcite: applications to geothermometry. Geochim Cosmochim Acta 53:2985–2995CrossRefGoogle Scholar
  7. Deines P (1989) Stable isotope variation in carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 301–359Google Scholar
  8. Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278CrossRefGoogle Scholar
  9. Demény A, Ahijado A, Casillas R, Vennemann, TW (1998) Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): a C, O, H isotope study. Lithos 44:83–151CrossRefGoogle Scholar
  10. Demény A, Sitnikova MA, Karchevsky PI (2004) Stable C and O isotope compositions of carbonatite complexes of the Kola Alkaline Province: phoscorite-carbonatite relationships and source compositions. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, Mineralogical Society Series 10. Mineralogical Society, London, pp 407–431Google Scholar
  11. Djuraev AD, Divaev FK (1999) Melanocratic carbonatites—new type of diamondbearing rocks, Uzbekistan. In: Stanley CJ et al (eds) Mineral deposits: processes to processing. Balkena, Rotterdam 1, pp 639–642Google Scholar
  12. Dobretsov NL, Bulgatov AN (1991) Geodynamic map of Transbaikalia (concepts of preparation and legend) (in Russian). United Institute of Geology, Geophysics and Mineralogy and the Buryat Geological Institute SB RAS, Novosibirsk, p 51Google Scholar
  13. Doroshkevich AG, Ripp GS (2004) The composition of magmas and fluids of carbonatite complexes of the Transbaikalia: data on study of inclusions. Extended abstracts of the interim IAGOD conference “Metallogeny of the Pacific Northwest (Russian Far East): tectonics, magmatism and metallogeny of active continental margins”, Vladivostok, pp 288–292Google Scholar
  14. Doroshkevich AG, Wall F, Ripp GS (2006) Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and a discussion of the significance of their Cr-rich xenoliths. Mineral PetrolGoogle Scholar
  15. Dunworth EA, Bell K (2001) The Turiy Massif, Kola Peninsula, Russia: isotopic and geochemical evidence for multi-source evolution. J Petrol 42:377–405CrossRefGoogle Scholar
  16. Faure G (1986) Principles of isotope geology. Wiley, New York, p 589Google Scholar
  17. Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64:075414-1–075414-13CrossRefGoogle Scholar
  18. French BM, Rosenberg PE (1965) Siderite (FeCO3): thermal decomposition in equilibrium with graphite. Science 147:1283CrossRefGoogle Scholar
  19. Gellantly DC (1966) Graphite in natural and experimental carbonate systems. Mineral Mag 35:936–970Google Scholar
  20. Gittins J, Harmer RE (1997) What is ferrocarbonatite? A revised classification. J Afr Earth Sci 25:159–168CrossRefGoogle Scholar
  21. Goldschmidt JR, Graf DL, Witters J, Northrop DA (1962) Studies in the system CaCO3-MgCO3-FeCO3: 1 Phase relations, 2 A method for major-element spectrochemical analysis, 3 Composition of some ferroan dolomites. J Geol 70:659–690Google Scholar
  22. Harmer RE, Lee CA, Eglington BM (1998) A deep mantle source for carbonatite magmatism: evidence from the nephelinites and carbonatites of the Buhera district, SE Zimbabwe. Earth Planet Sci Lett 158:131–142CrossRefGoogle Scholar
  23. Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32:845–848CrossRefGoogle Scholar
  24. Karchevsky PI, Moutte J (2004) The phoscorite-carbonatite complex of Vuorijarvi, Kola Peninsula. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, Mineralogical Society Series 10. Mineralogical Society, London, pp 163–199Google Scholar
  25. Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites. IAVCEI Proceedings in Volcanology, vol 4. Springer, Berlin Heidelberg New York, pp 113–123Google Scholar
  26. Krasnova NI, Petrov TG, Balaganskaya EG, Garcia D, Moutte J, Zaitsev AN, Wall F (2004) Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, Mineralogical Society Series 10. Mineralogical Society, London, pp 43–72Google Scholar
  27. Kravtsov AI, Bobrov VA, Kropotkova OI (1981) Geochemistry of carbon of gases from kimberlites (in Russian). Abstracts of All-Union Symposium on geochemistry of carbon, Moscow, pp 73–76Google Scholar
  28. Krivdik SG (2001) Alkaline magmatism of Ukraine shield. In: Vladykin NV (ed) Alkaline magmatism and the problem of mantle sources. Publishing house of the Institute of Geography SB RAS, Irkutsk, pp 46–58Google Scholar
  29. Lee MJ, Garcia D, Moutte J, Williams CT, Wall F (2004) Carbonatites and phoscorites from the Sokli Complex, Finland. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province, Mineralogical Society Series 10. Mineralogical Society, London, pp 129–158Google Scholar
  30. Litvin YuA (1998) Hot spots of mantle and experiment to 10 GPa: alkaline reactions, lithosphere carbonatization, and new diamond-generating systems. Russ Geol Geophys 39:1760–1768Google Scholar
  31. Litvin YuA, Zharikov VA (2000) Experimental modelling of diamond genesis: diamond crystallization in multicomponent carbonate–silicate melts at 5–7 GPa and 1200–1570 °C. Dokl Earth Sci 373:867–871Google Scholar
  32. Litvin YuA, Chudinovskikh LT, Sapari GV, Obyden SK, Chukichev MV, Vavilov VS (1999) Diamonds of new alkaline carbonate–graphite HP syntheses: SEM morphology, CCL-SEM and CL spectroscopy studies. Diamond Relat Mater 8:267–272CrossRefGoogle Scholar
  33. Lugovaya IP, Lapin AV, Krivdik SG (1980) A role of isotopic data for condition of formation of carbonatite complexes (in Russian). Abstracts of VIII All-Union Symposium on stable isotopes in geochemistry, pp 84–85Google Scholar
  34. Luth RW (1993) Diamond, eclogites, and the oxidation state of the Earth’s mantle. Science 261:66–68CrossRefGoogle Scholar
  35. Mourtada S, Le Bas MJ, Pin C (1997) Petrogenesis of Mg-carbonatites from Tamazert in the Moroccan High Atlas. CR Acad Sci II A 325:559–564Google Scholar
  36. Nielsen TFD, Solovova IP, Veksler IV (1997) Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallized melt inclusions, Gardiner complex. Contrib Mineral Petrol 126:331–344Google Scholar
  37. Pal’yanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF, Sobolev NV (1999) Diamond formation from mantle carbonate fluids. Nature 400:417–418CrossRefGoogle Scholar
  38. Pal’yanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF, Sobolev NV (2002) Diamond formation through carbonate-silicate interaction. Am Mineral 87:1009–1013Google Scholar
  39. Panina LI (2005) Multiphase carbonate-salt immiscibility in carbonate melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). Contrib Mineral Petrol 150:19–36CrossRefGoogle Scholar
  40. Pasteris JD, Wopenka B (1991) Raman spectra of graphite as indicator of degree of metamorphism. Can Mineral 29:1–9Google Scholar
  41. Pearson DG, Davies GR, Nixon PH, Milledge HJ (1989) Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences. Nature 338:60–62CrossRefGoogle Scholar
  42. Ripp GS, Badmatsyrenov MV, Doroshkevich AG (2003) Mineral composition and geochemical features of the Pogranichnoe carbonatites (North Transbaikalia). In: Vladykin NV (ed) Plumes and problems of deep sources of alkaline magmatism (in Russian). Publishing house of the Institute of Geography SB RAS, Irkutsk, pp 88–108Google Scholar
  43. Ripp GS, Badmatsyrenov MV, Doroshkevich AG, Isbrodin IA (2004) Mineral composition and geochemical features of the Veseloe carbonatites (North Transbaikalia, Russia). In: Vladykin NV (ed) Plumes and problems of deep sources of alkaline magmatism. Publishing house of the Institute of Geography SB RAS, Irkutsk, pp 257–273Google Scholar
  44. Ripp GS, Badmatsyrenov MV, Doroshkevich AG, Isbrodin IA (2005) New carbonatite-bearing area in Northern Transbaikalia. Petrology 13:489–498Google Scholar
  45. Ripp GS, Karmanov NS, Doroshkevich AG, Badmatsyrenov MV, Izbrodin IA (2006) Chrome-bearing mineral phases in the carbonatites of Northern Transbaikalia. Geochem Int 44:395–403CrossRefGoogle Scholar
  46. Rosenberg PE (1963) Subsolidus relations in the system CaCO-FeCO3. Am J Sci 261:683–690CrossRefGoogle Scholar
  47. Santos RV, Clayton RN (1995) Variations of oxygen and carbon isotopes in carbonatites: a study of Brazilian alkaline complexes. Geochim Cosmochim Acta 59:1339–1352CrossRefGoogle Scholar
  48. Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 58:761–771CrossRefGoogle Scholar
  49. Spivak AV, Litvin YuA (2004) Diamond syntheses in multicomponent carbonate-carbon melts of natural chemistry: elementary processes and properties. Diam Rel Mat 13:482–487CrossRefGoogle Scholar
  50. Taylor HP, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alnö district, Sweden. Geochim Cosmochim Acta 31:407–430CrossRefGoogle Scholar
  51. Thompson RN, Smith PM, Gibson SA, Mattey DP, Dickin AP (2002) Ankerite carbonatite from Swartbooisdrif, Namibia: the first evidence for magmatic ferrocarbonatite. Contrib Mineral Petrol 143:377–396Google Scholar
  52. Verwoerd WJ (1967) The carbonatites of South Africa and South West Africa. Handb GSSA 6:251–252Google Scholar
  53. Vladykin NV, Morikiyo T, Miyazaki T (2004) Geochemistry of carbon and oxygen isotopes in carbonatites of Siberia and Mongoliya and some gedynamic consequences. In: Vladykin NV (ed) Deep-seated magmatism, its sources and their relation to plume processes. Publishing House of the Institute of Geography SB RAS, Irkutsk, pp 96–112Google Scholar
  54. Vrublevskii VV, Pokrovskii BG, Zhuravlev DZ, Anoshin GN (2003) Composition and age of the penchenga linear carbonatite complex, Yenisei range. Petrology 11:130–147Google Scholar
  55. Wada H, Suzuki K (1983) Carbon isotopic thermometry calibrated by dolomite-calcite solvus temperatures. Geochim Cosmochim Acta 47:697–706CrossRefGoogle Scholar
  56. Wall F (2000) Mineral chemistry and petrogenesis of rare earth-rich carbonatites with particular reference to the Kangankunde carbonatite, Malawi. PhD Thesis, University of London, p 340Google Scholar
  57. Wall F, Zaitsev AN, Mariano AN (2001) Rare earth pegmatites in carbonatites. J Afr Earth Sci 32:A35–A36CrossRefGoogle Scholar
  58. Weidner JR, Tuttle OF (1965) Stability of siderite, FeCO3. Geol Soc Am Spec Pap 82:220Google Scholar
  59. Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical composition and element distribution. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–46Google Scholar
  60. Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557Google Scholar
  61. Worley BA, Cooper AF (1995) Mineralogy of the Dismal Nepheline Syenite, Southern Victoria Land, Antarctica. Lithos 35:109–128CrossRefGoogle Scholar
  62. Worley BA, Cooper AF, Hall CE (1995) Petrogenesis of carbonate-bearing nepheline syenites and carbonatites from Southern Victoria Land, Antarctica: origin of carbon and the effects of calcite-graphite equilibrium. Lithos 35:183–199CrossRefGoogle Scholar
  63. Zagnitko VN, Lugovaya IP, Proskurko LI (1980) Features of graphite from Ukraine on isotopic data (in Russian). Abstracts of Soviet-Union Symposium on stable isotopes in geochemistry, pp 314–315Google Scholar
  64. Zuilen MA, Lepland A, Teranes J, Finarelli J, Wahlen M, Arrhenius G (2003) Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Res 126:331–348CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Geological Institute SB RASUlan-UdeRussia
  2. 2.Department of MineralogyThe Natural History MuseumLondonUK

Personalised recommendations