Advertisement

Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′N: ODP Hole 1274A

  • Monique Seyler
  • J. -P. Lorand
  • H. J. B. Dick
  • M. Drouin
Original Paper

Abstract

ODP Leg 209 Site 1274 mantle peridotites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg# (up to 0.92) and spinel Cr# (∼0.5), suggesting high degree of partial melting (>20%). Detailed studies of their microstructures show that they have extensively reacted with a pervading intergranular melt prior to cooling in the lithosphere, leading to crystallization of olivine, clinopyroxene and spinel at the expense of orthopyroxene. The least reacted harzburgites are too rich in orthopyroxene to be simple residues of low-pressure (spinel field) partial melting. Cu-rich sulfides that precipitated with the clinopyroxenes indicate that the intergranular melt was generated by no more than 12% melting of a MORB mantle or by more extensive melting of a clinopyroxene-rich lithology. Rare olivine-rich lherzolitic domains, characterized by relics of coarse clinopyroxenes intergrown with magmatic sulfides, support the second interpretation. Further, coarse and intergranular clinopyroxenes are highly depleted in REE, Zr and Ti. A two-stage partial melting/melt–rock reaction history is proposed, in which initial mantle underwent depletion and refertilization after an earlier high pressure (garnet field) melting event before upwelling and remelting beneath the present-day ridge. The ultra-depleted compositions were acquired through melt re-equilibration with residual harzburgites.

Keywords

Partial Melting Mantle Peridotite Fault Gouge Base Metal Sulfide Exsolution Lamella 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research used samples and data supplied by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc. We thank D. Brunelli for discussion, and B. Boyer for his assistance with the SIMS analyses. Comments from two anonymous reviewers are gratefully acknowledged. Funding for this research was provided by Centre National de la Recherche Scientifique-Institut National des Sciences de l’Univers (Programme Dynamique et Evolution de la Terre Interne).

Supplementary material

References

  1. Alard O, Luguet A, Pearson N J, Griffin W L, Lorand J-P, Gannoun A, Burton KW, O’Reilly SY (2005) In-situ Os analyses bridging the isotopic gap between abyssal peridotites and Mid-Oceanic Ridge Basalts. Nature 436:1005–1008CrossRefGoogle Scholar
  2. Aharonov E, Whitehead JA, Kelemen PB, Spiegelman M (1995) Channeling instability of upwelling melt in the mantle. J Geophys Res 100:20433–20450CrossRefGoogle Scholar
  3. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214CrossRefGoogle Scholar
  4. Asimow PD (1999) A model that reconciles major- and trace-element data from abyssal peridotites. Earth Planet Sci Lett 169:303–319CrossRefGoogle Scholar
  5. Asimow PD, Stolper EM (1999) Steady-state mantle–melt interactions in one dimension: I. Equilibrium transport and melt focusing. J Petrol 40:475–494CrossRefGoogle Scholar
  6. Ballhaus C, Tredoux M, Spaeth A. (2001) Phase relations in the Fe-Ni-Cu-PGE-S system at magmatic temperature and application to massive sulfide ores of Sudbury Igneous Complex. J Petrol 42:1991–1926CrossRefGoogle Scholar
  7. Barth MG, Mason PRD, Davies GR, Dijkstra AH, Drury MR (2003) Geochemistry of the Othris Ophiolite, Greece: evidence for refertilisation? J Petrol 44:1759–1785CrossRefGoogle Scholar
  8. Bodinier JL, Vasseur G, Dupuy C, Fabriès J (1990) Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. J Petrol 31:597–628Google Scholar
  9. Bonatti E, Peyve A, Kepezhinskas P, Kurentsova N, Seyler M, Skolotnev S, Udintsev G (1992) Upper mantle heterogeneity below the Mid-Atlantic Ridge, 0–15°N. J Geophys Res 97:4461–4476Google Scholar
  10. Bottazzi P, Ottolini L, Vannucci R, Zanetti A (1994) An accurate procedure for the quantification of rare elements in silicates. In: Proceedings of the 9th international conference on secondary ion mass spectrometry SIMS IX. Wiley, New York, pp 927–930Google Scholar
  11. Brandon AD, Snow JE, Walker RJ, Morgan JW, Mock TD (2000) 190Pt/186Os and 187Re/187Os systematics of abyssal peridotites. Earth Planet Sci Lett 177:319–335CrossRefGoogle Scholar
  12. Brey GP, Kohler T (1990) Geothermobarometry in 4-phase lherzolites. 2. New thermobarometers and practical assessment of existing thermobarometers. J Petrol 31:1353–1378Google Scholar
  13. Brunelli D, Seyler M, Cipriani A, Ottolini L, Bonatti E (2006) Discontinuous melt extraction and weak refertilization of mantle Peridotites at theVema Lithospheric Section (Mid-Atlantic Ridge). J Petrol 47:745–771CrossRefGoogle Scholar
  14. Bulatov VK, Girnis AV, Brey GP (2002) Experimental melting of a modally heterogeneous mantle. Mineral Petrol 75:131–152CrossRefGoogle Scholar
  15. Cannat M (1996) How thick is the magmatic crust at slow-spreading oceanic ridges?. J Geophys Res 101:2847–2857CrossRefGoogle Scholar
  16. Cannat M, Bideau D, Bougault H (1992) Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37′N and 16°52′N. Earth Planet Sci Lett 109:87–106CrossRefGoogle Scholar
  17. Cannat M, Lagabrielle Y, de Coutures N, Bougault H, Dmitriev L, Fouquet Y (1997) Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15°N region. Tectonophysics 279:193–213CrossRefGoogle Scholar
  18. Ceuleneer G, Nicolas A, Boudier F (1988) Mantle flow patterns at an oceanic spreading centre: the Oman peridotite record. Tectonophysics 151:1–26CrossRefGoogle Scholar
  19. Craig JR, Kullerud G (1969) Phase relations in the Cu-Fe-Ni-S system and their applications to magmatic ore deposits. In: Magmatic ore deposits. Econ Geol Monogr 4, pp 343–358Google Scholar
  20. Daines MJ, Kohlstedt DL (1993) Melting and melt movement in the Earth. Phys Sci Eng 342:43–52Google Scholar
  21. Dick HJB (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders AE, Norris MJ (eds) Magmatism in the ocean basins. Geolog Soc Spec Public 42, pp 71–105Google Scholar
  22. Dijkstra AH, Barth MG, Drury MR, Mason PRD, Vissers RLM (2003) Diffuse porous melt flow and melt–rock reaction in the mantle lithosphere at a slow-spreading ridge: A structural petrology and LA-ICP-MS study of the Othris Peridotite Massif (Greece). Geochem Geophys Geosyst DOI: 10.1029/2001GC000278Google Scholar
  23. Dosso L, Bougault H, Schilling JG, Joron JL (1991) Sr-Nd-Pb geochemical morphology between 10° and 17°N on the Mid-Atlantic Ridge: a new MORB isotope signature. Earth Planet Sci Lett 106:29–43CrossRefGoogle Scholar
  24. Dosso L, Bougault H, Joron JL (1993) Geochemical morphology of the north Mid-Atlantic Ridge, 10°–24°N, trace element-isotope complementarity. Earth Planet Sci Lett 120:443–462CrossRefGoogle Scholar
  25. Elthon D (1992) Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle. J Geophys Res 97:9015–9025Google Scholar
  26. Escartin J, Cannat M (1999) Ultramafic exposures and the gravity signature of the lithosphere near the Fifteen–Twenty Fracture Zone (Mid-Atlantic Ridge, 14°–16.5°N). Earth Planet Sci Lett 171:411–424CrossRefGoogle Scholar
  27. Fabriès J, Bodinier JL, Dupuy C, Lorand JP, Benkerrou C (1989) Evidence of modal metasomatism in the orogenic spinel lherzolite body from Caussou (Northern Pyrenees, France). J Petrol 30:199–228Google Scholar
  28. Fujiwara T, Lin J, Matsumoto T, Kelemen PB, Tucholke BE, Casey J (2003) Crustal evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma. Geochem Geophys Geosyst DOI: 10.1029/2002GC000364Google Scholar
  29. Gaetani GA, Grove TL (1999) Wetting of mantle olivine by sulphide melt: implications for Re/Os ratios in the mantle peridotite and late-stage core formation. Earth Planet Sci Lett 169:147–163CrossRefGoogle Scholar
  30. Godard M, Bodinier JL, Vasseur G (1995) Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: a chromatographic approach. Contrib Mineral Petrol 133:449–461Google Scholar
  31. Hellebrand E, Snow JE (2003) Deep melting and sodic metasomatism underneath the highly oblique-spreading Lena Trough (Arctic Ocean). Earth Planet Sci Lett 216:283–299CrossRefGoogle Scholar
  32. Hellebrand E., Snow JE, Hoppe P, Hofman AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43:2305–2338CrossRefGoogle Scholar
  33. Jacques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73:287–310CrossRefGoogle Scholar
  34. Johnson KTM, Dick HJB (1992) Open system melting and the temporal and spatial variation of peridotite and basalt compositions at the Atlantis II F.Z. J Geophys Res 97:9219–9241Google Scholar
  35. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678Google Scholar
  36. Kelemen PB (1990) Reaction between ultramafic rock and fractionating basaltic magma, I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J Petrol 31:51–98Google Scholar
  37. Kelemen PB (2003) Igneous crystallization beginning at 20 km beneath the Mid-Atlantic Ridge, 14° to 16°N. EOS Trans AGU 84 (46) Fall Meet Suppl Abst V22H-03 invitedGoogle Scholar
  38. Kelemen PB, Shimizu N, Salters VJM (1995a) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753CrossRefGoogle Scholar
  39. Kelemen PB, Whitehead JA, Aharonov E, Jordahl KA (1995b) Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. J Geophys Res 100:475–496CrossRefGoogle Scholar
  40. Kelemen PB, Hirth G, Shimizu N, Spielgelman M, Dick HJB (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil Trans R Soc Lond 355:283–318CrossRefGoogle Scholar
  41. Kelemen PB, Kikawa E, Miller DJ et al (2004) Proc ODP Init Repts 209 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845–9547, USA. Proc ODP Init Repts 209 [Online]. Available from World Wide Web: http://www.odp.tamu.edu/publications/209_IR/209ir.htmGoogle Scholar
  42. Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874CrossRefGoogle Scholar
  43. Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts, 2. Applications J Geophys Res 97:6907–6926CrossRefGoogle Scholar
  44. Klügel A (2001) Prolonged reactions between harzburgite xenoliths and silica-undersaturated melt: implications for dissolution and Fe–Mg interdiffusion rates of orthopyroxene. Contrib Mineral Petrol 141:1–14Google Scholar
  45. Lorand J-P (1988) The Cu-Fe-Ni sulfide assemblages of tectonic peridotites from the Maqsad district, Sumail ophiolite, Southern Oman: implications for the origin of the sulfide component in the oceanic upper-mantle. In: Boudier F, Nicolas A (eds) “The ophiolites of Oman”. Tectonophysics 151:57–74Google Scholar
  46. Lorand J-P (1991) Sulfide petrology and sulfur geochemistry of orogenic lherzolites : a comparative study between Pyrenean bodies (France) and the Lanzo massif (Italy). In: Menzies MA et al (eds) Orogenic Lherzolites and mantle processes. J Petrol, pp 77 95Google Scholar
  47. Lorand J-P, Grégoire M (2006) Petrogenesis of base metal sulfides of some peridotites of the Kaapvaal craton (south Africa). Contrib Mineral Petrol 151:495–520CrossRefGoogle Scholar
  48. Luguet A, Lorand J-P, Seyler M (2003) A coupled study of sulfide petrology and highly siderophile element geochemistry in abyssal peridotites from the Kane Fracture Zone (MARK area, Mid-Atlantic Ridge). Geochim Cosmochim Acta 67:1553–1570CrossRefGoogle Scholar
  49. Mavrogènes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180CrossRefGoogle Scholar
  50. Naldrett AJ (1989) Sulfide melt crystallization temperatures, solubilities in silicate melts, and Fe, Ni, and Cu partitioning between basaltic magmas and olivine. In: Whitney JA, and Naldrett AJ (eds) Ore depositions associated with magmas. Rev Econ Geol 4:5–20Google Scholar
  51. Navon O, Stolper E (1987) Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. J Geol 95:285–307CrossRefGoogle Scholar
  52. Nicolas A (1986) A melt extraction model based on structural studies in mantle peridotites. J Petrol 27:999–1022Google Scholar
  53. Parkinson IJ, Pearce JA, Thirlwall MF, Johnson KTM, Ingram G (1992) Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Stokking LB et al (eds) Proc ODP Sci Results 125. Ocean Drilling Program, College Station, Texas, pp 487–506Google Scholar
  54. Pickering-Witter J, Johnston AD (2000) The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib Mineral Petrol 140:190–211CrossRefGoogle Scholar
  55. Ross K, Elthon D (1997) Extreme incompatible trace-element depletion of diopside in residual mantle from south of the Kane Fracture Zone. In: Karson JA, Cannat M, Miller DJ, Elton D (eds) Proc ODP Sci Results, vol 153. College Station, Texas, pp 277–284Google Scholar
  56. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455CrossRefGoogle Scholar
  57. Schwab BE, Johnston AD (2001) Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol 42:1789–1811CrossRefGoogle Scholar
  58. Seyler M, Bonatti E (1997) Regional-scale melt–rock interaction in lherzolitic mantle in the Romanche Fracture Zone (Atlantic ocean). Earth Planet Sci Lett 146:273–287CrossRefGoogle Scholar
  59. Seyler M, Toplis MJ, Lorand JP, Luguet A, Cannat M (2001) Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology 29:155–158CrossRefGoogle Scholar
  60. Seyler M, Cannat M, Mével C (2003) Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E). Geochem Geophys Geosyst. DOI: 10.1029/2002GC000305Google Scholar
  61. Seyler M, Lorand JP, Toplis M, Godard G (2004) Asthenospheric metasomatism beneath the mid-oceanic ridge: evidence from depleted abyssal peridotite. Geology 32:301–304CrossRefGoogle Scholar
  62. Shaw CSJ (1999) Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: further implications for the origins of Si-rich alkaline glass inclusions in mantle xenoliths. Contrib Mineral Petrol 135:114–132CrossRefGoogle Scholar
  63. Shaw DM (2000) Continuous (dynamic) melting theory revisited. Can Mineral 38:1041–1063Google Scholar
  64. Shibata T, Thompson G (1986) Peridotites from the Mid-Atlantic Ridge at 43°N and their petrogenetic relation to abyssal tholeiites. Contrib Mineral Petrol 93:144–159CrossRefGoogle Scholar
  65. Stolper E (1980) A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib Mineral Petrol 74:13–27CrossRefGoogle Scholar
  66. Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33CrossRefGoogle Scholar
  67. Suhr G, Seck HA, Shimizu N, Günther D, Jenner G (1998) Infiltration of refractory melts into the lowermost oceanic crust: evidence from dunite- and gabbro-hosted clinopyroxenes in the Bay of Islands Ophiolite. Contrib Mineral Petrol 131:136–154CrossRefGoogle Scholar
  68. Takazawa E, Frey FA, Shimizu N, Obata M, Bodinier JL (1992) Geochemical evidence for melt migration and reaction in the upper mantle. Nature 359:55–58CrossRefGoogle Scholar
  69. Toplis MJ, Seyler M, Mével C (2003) Trace element concentrations of clinopyroxenes in peridotites from the eastern section of the ultra-slow spreading Southwest Indian ridge (40°E–69°E). EGS Geophys Res Abstr 5:07305Google Scholar
  70. Vernières J, Godard M, Bodinier JL (1997) A plate model for the simulation of trace elements during partial melting and magma transport in the Earth’s upper mantle. J Geophys Res 102:24771–24784CrossRefGoogle Scholar
  71. Wagner TP, Grove TL (1998) Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contrib Mineral Petrol 131:1–12CrossRefGoogle Scholar
  72. Zinnegrebe E, Foley SF (1995) Metasomatism in mantle xenoliths from Gees, West Eiffel, Germany: evidence for the genesis of calk-alcaline glasses and metasomatic Ca-enrichment. Contrib Mineral Petrol 122:75–96Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Monique Seyler
    • 1
    • 4
  • J. -P. Lorand
    • 1
  • H. J. B. Dick
    • 2
  • M. Drouin
    • 3
  1. 1.Museum National d’Histoire NaturelleCNRS UMR7160 Minéralogie—PétrologieParisFrance
  2. 2.Woods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.Laboratoire de Tectonophysique CNRS UMR 5568, Université de Montpellier 2Montpellier Cedex 05France
  4. 4.Université Lille1, UFR Sciences de la TerreVilleneuve d’Ascq cedexFrance

Personalised recommendations