Contributions to Mineralogy and Petrology

, Volume 152, Issue 6, pp 703–720 | Cite as

Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu–Hf and Sm–Nd geochronology

  • Susanne SkoraEmail author
  • Lukas P. Baumgartner
  • Nancy J. Mahlen
  • Clark M. Johnson
  • Sébastien Pilet
  • Eric Hellebrand
Original Paper


Garnets from the Zermatt-Saas Fee eclogites contain narrow central peaks for Lu + Yb + Tm ± Er and at least one additional small peak towards the rim. The REE Sm + Eu + Gd + Tb ± Dy are depleted in the cores but show one prominent peak close to the rim. These patterns cannot be modeled using Rayleigh fractionation accompanied by mineral breakdown reactions. Instead, the patterns are well explained using a transient matrix diffusion model where REE uptake is limited by diffusion in the matrix surrounding the porphyroblast. Observed profiles are well matched if a roughly linear radius growth rate is used. The secondary peaks in the garnet profiles are interpreted to reflect thermally activated diffusion due to temperature increase during prograde metamorphism. The model predicts anomalously low 176Lu/177Hf and 147Sm/144Nd ratios in garnets where growth rates are fast compared to diffusion of the REE, and these results have important implications for Lu–Hf and Sm–Nd geochronology using garnet.


147Sm Isochron Light Rare Earth Element Garnet Growth Diffusion Halo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by Swiss National Science Foundation grant SNF2100-066996 to LPB and U.S. National Science Foundation grant EAR-0309853 to CMJ. Many thanks to A.W. Hofmann for granting time access to the ionprobe, as well as T. Lapen for fruitful discussions. The constructive reviews of J. Van Orman and R. Dohmen and the editorial handling of J. Hoefs significantly improved the manuscript and were greatly appreciated.


  1. Amato JM, Johnson CM, Baumgartner LP, Beard BL (1999) Rapid exhumation of the Zermatt-Saas ophiolite deduced from high-precision Sm–Nd and Rb-Sr geochronology. Earth Planet Sci Lett 171:425–438CrossRefGoogle Scholar
  2. Barnicoat AC (1988) Zoned high-pressure assemblages in pillow lavas of the Zermatt-Saas ophiolite zone, Switzerland. Lithos 21:227–236CrossRefGoogle Scholar
  3. Barnicoat AC, Fry N (1986) High pressure metamorphism of the Zermatt-Saas ophiolite zone, Switzerland. J Geol Soc London 143:603–618CrossRefGoogle Scholar
  4. Baumgartner LP, Rumble D III (1988) Transport of stable isotopes: I: development of a kinetic continuum theory for stable isotope transport. Contrib Mineral Petrol 98:417–430CrossRefGoogle Scholar
  5. Baumgartner LP, Skora S, Mahlen N, Johnson C (2005) Modeling diffusion limited uptake of trace elements by eclogite garnets. GSA Abstr Progr 37(7):52Google Scholar
  6. Bearth P (1959) Über Eklogite, Glaucophanschiefer, und metamorphe Pillowlaven. Schweiz Mineral Petrogr Mitt 39:267–286Google Scholar
  7. Bearth P (1967) Die Ophiolithe der Zone von Zermatt-Saas Fee. Beitr Geol Karte Schweiz:p 132Google Scholar
  8. Bearth P (1973) Gesteins und Mineralparagenesen aus den Ophiolithen von Zermatt. Schweiz Mineral Petrogr Mitt 53:299–334Google Scholar
  9. Bocchio R, DeCapitani L, Ottolini L, Cella F (2000) Trace element distribution in eclogites and their clinopyroxene/garnet pair: a case study from Soazza (Switzerland). Eur J Mineral 12:147–161Google Scholar
  10. Bowtell SA, Cliff RA, Barnicoat AC (1994) Sm–Nd isotopic evidence on the age of eclogitization in the Zermatt-Saas ophiolite. J Metam Geol 12:187–196Google Scholar
  11. Brady JB (1983) Intergranular diffusion in metamorphic rocks. Am J Sci 283:181–200Google Scholar
  12. Brown EH (1986) Geology of the Shuksan Suite, North Cascades, Washington, USA. In: Brown EH, Evans BW (eds) Blueschists and eclogites. GSA Memoir164:143–154Google Scholar
  13. Bucher K, Fazis Y, de Capitani C, Grapes R (2005) Blueschists, eclogites, and decompression assemblages of the Zermatt-Saas ophiolite: High pressure metamorphism of subducted Tethys lithosphere. Am Mineral 90:821–835CrossRefGoogle Scholar
  14. Carlson WD (1989) The significance of intergranular diffusion to the mechanism and kinetics of porphyroblast crystallization. Contrib Mineral Petrol 103:1–24CrossRefGoogle Scholar
  15. Carlson WD (1991) Competitive diffusion-controlled growth of porphyroblasts. Min Mag 55:317–330Google Scholar
  16. Carlson WD, Denison C (1992) Mechanisms of porphyroblast crystallization; results from high-resolution computed X-ray tomography. Science 257:1236–1239CrossRefGoogle Scholar
  17. Carlson WD, Denison C, Ketcham RA (1995) Controls on the nucleation and growth of porphyroblasts; kinetics from natural textures and numerical models. Geol J 30:207–225Google Scholar
  18. Carlson WD, Ketcham R (2006) Formation of porphyroblastic textures. Geophys Res Abstr 8:09454Google Scholar
  19. Cartwright I, Barnicoat AC (2002) Petrology, geochronology, and tectonics of shear zones in the Zermatt-Saas and Combin zones of the Western Alps. J Metam Geol 20:263–281CrossRefGoogle Scholar
  20. Cashman KV, Ferry JM (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. III metamorphic crystallization. Contrib Mineral Petrol 99:401–415CrossRefGoogle Scholar
  21. Cherniak DJ (1998a) REE diffusion in calcite. Earth Planet Sci Lett 160:273–287CrossRefGoogle Scholar
  22. Cherniak DJ (1998b) Rare earth element and gallium diffusion in yttrium aluminum garnet. Phys Chem Mineral 26:156–163CrossRefGoogle Scholar
  23. Cherniak DJ (2000) Rare earth element diffusion in apatite. Geochim Cosmochim Acta 64:3871–3885CrossRefGoogle Scholar
  24. Cherniak DJ (2003) REE diffusion in feldspar. Chem Geol 193:25–41CrossRefGoogle Scholar
  25. Cherniak DJ, Hanchar JM, Watson EB (1997) Rare-earth diffusion in zircons. Chem Geol 134:289–301CrossRefGoogle Scholar
  26. Cherniak DJ, Zhang XY, Wayne NK, Watson EB (2001) Sr, Y, and REE diffusion in fluorite. Chem Geol 181:99–111CrossRefGoogle Scholar
  27. Chinner GA, Dixon JE (1973) Some high-pressure paragenesis of the Allalin Gabbro, Valais, Switzerland. J Petrol 14:185–202Google Scholar
  28. Crank J (1975) The mathematics of diffusion. Oxford University Press, p 414Google Scholar
  29. Dal Piaz GV, Cortiana G, Del Moro A, Martin S, Pennacchioni G, Tartarotti P (2001) Tertiary age and paleostructural inferences of the eclogitic imprint in the Austroalpine outliers and Zermatt-Saas ophiolite, western Alps. Int J Earth Sci 90:668–684CrossRefGoogle Scholar
  30. Daniel CG, Spear FS (1998) Three-dimensional patterns of garnet nucleation and growth. Geology 26:503–506CrossRefGoogle Scholar
  31. Daniel CG, Spear FS (1999) The clustered nucleation and growth processes of garnet in regional metamorphic rocks from North-west Connecticut, USA. J Metam Geol 17:503–520CrossRefGoogle Scholar
  32. Denison C, Carlson WD (1997) Three-dimensional quantitative textural analysis of metamorphic rocks using high-resolution computed X-ray tomography; Part II, application to natural samples. J Metam Geol 15:45–57CrossRefGoogle Scholar
  33. Denison C, Carlson WD, Ketcham RA (1997) Three-dimensional quantitative textural analysis of metamorphic rocks using high-resolution computed X-ray tomography; part I, methods and techniques. J Metam Geol 15:29–44CrossRefGoogle Scholar
  34. Dewey JF, Helman ML, Turco E, Hutton DHW, Knott SD (1989) Kinematics in the western Mediterranean. In: Coward MP, Dietrich D, Park RG (eds) Alpine Tectonics. Geol Soc Spec Publ 45:265–283Google Scholar
  35. Dohmen R, Chakraborty S (2003) Mechanism and kinetics of element and isotopic exchange mediated by a fluid phase. Am Mineral 88:1251–1270Google Scholar
  36. Duchêne S, Blichert-Toft J, Luais B, Télouk P, Lardeaux JM, Albarède F (1997) The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature 387:586–589CrossRefGoogle Scholar
  37. Eiler JM, Baumgartner LP, Valley JW (1994) Fast grain boundary: a Fortran-77 program for calculating the effects of retrograde inetrdiffusion of stable isotopes. Comp and Geosci 20:1415–1434CrossRefGoogle Scholar
  38. Escher A, Beaumont C (1997) Formation, burial and exhumation of basement nappes at crustal scale: a geometric model based on the Western Swiss-Italian Alps. J Struct Geol 19:955–974CrossRefGoogle Scholar
  39. Fischer GW (1978) Rate laws in metamorphism. Geochim Cosmochim Acta 42:1035–1050CrossRefGoogle Scholar
  40. Froitzheim N, Schmid SM, Frey M (1996) Mesozoic paleogeography and the timing of eclogite-facies metamorphism in the Alps: a working hypothesis. Eclogae Geol Helv 89:81–110Google Scholar
  41. Ganguin J (1988) Contribution à la caractérisation du métamorphisme polyphase de la zone de Zermatt-Saas Fee (Alpes Valaisannes). Thèse (Diss) ETH Zürich, p 311Google Scholar
  42. Günther D, Frischknecht R, Heinrich CA, Kahlert HJ (1997) Capabilities of an argon 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials. J Anal Atom Spectro 12:939–944CrossRefGoogle Scholar
  43. Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in “residual” abyssal peridotites from the central Indian ridge. J Petrol 43:2305–2338CrossRefGoogle Scholar
  44. Hermann J (2002) Allanite: thorium and light rare earth element carrier in subducted crust. Chem Geol 192:289–306CrossRefGoogle Scholar
  45. Herzig C, Mishin Y (1998) Grain boundary diffusion in metals. In: Kärger J, Heitjans P, Haberlandt R (eds) Diffusion in condensed matter. Vieweg, Wiesbaden, pp 90–115Google Scholar
  46. Hickmott DD, Shimizu N, Spear FS, Selverstone J (1987) Trace element zoning in a metamorphic garnet. Geology 15:573–576CrossRefGoogle Scholar
  47. Hiraga T, Anderson IM, Kohlstedt DL (2004) Grain boundaries as reservoirs of incompatible elements in the Earth’s mantle. Nature 427:699–703CrossRefGoogle Scholar
  48. Hirsch DM, Ketcham RA, Carlson WD (2000) An evaluation of spatial correlation functions in textural analysis of metamorphic rocks. Geol Mat Res 2:1–42Google Scholar
  49. Hollister LS (1966) Garnet Zoning: An interpretation based on the Rayleigh fractionation model. Science 154:1647–1650CrossRefGoogle Scholar
  50. Jochum KP, Dingwell DB, Rocholl A, Stoll B, Hofmann AW et al (2000) The preparation and preliminary characterization of eight geological MPI-DING reference glasses for in-situ microanalysis. Geostand Newsl 24:87–133Google Scholar
  51. Katzir Y, Avigad D, Matthews A, Garfunkel Z, Evans BW (2000) Origin, HP/LT metamorphism and cooling of ophiolitic mélanges in southern Evia (NW Cyclades), Greece. J Metam Geol 18:699–718CrossRefGoogle Scholar
  52. Kerrick DM, Lasaga AC, Raeburn SP (1991) Kinetics of heterogeneous reactions. In: Kerrick DM (ed) Contact metamorphism. Rev Mineral 26:585–666Google Scholar
  53. Koepke B, Behrens H (2001) Trace element diffusion in andesitic melts: An application of synchrotron X-ray fluorescence analysis. Geochim Cosmochim Acta 65:1481–1498CrossRefGoogle Scholar
  54. Kretz R (1969) On the spatial distribution of crystals in rocks. Lithos 2:39–66Google Scholar
  55. Kretz R (1973) Crystallization of garnet at two localities near Yellowknife. Can Mineral 12:1–20Google Scholar
  56. Kretz R (1974) Some models for the rate of crystallization of garnet in metamorphic rocks. Lithos 7:123–131CrossRefGoogle Scholar
  57. Kretz R (1993) A garnet population in Yellowknife schist, Canada. J Metam Geol 11:101–120Google Scholar
  58. Lanzirotti A (1995) Yttrium zoning in metamorphic garnets. Geochim Cosmochim Acta 59:4105–4110CrossRefGoogle Scholar
  59. Lapen TJ, Johnson CM, Baumgartner LP, Mahlen NJ, Beard BL, Amato JM (2003) Burial rates during prograde metamorphism of an ultra-high-pressure terrane: an example from Lago di Cignana, western Alps, Italy. Earth Planet Sci Lett 215:57–72CrossRefGoogle Scholar
  60. Lasaga AC (1986) Metamorphic reaction rate laws and development of reaction isograds. Min Mag 50:359–373Google Scholar
  61. Lasaga AC (1998) Kinetic theory in the Earth sciences. Princeton University Press. Princeton, p 811Google Scholar
  62. Longerich HP, Jackson SE, Günther D (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal Atom Spectro 11:899–904CrossRefGoogle Scholar
  63. Mahlen NJ, Skora S, Johnson CM, Baumgartner LP, Lapen TJ, Beard BL, Pilet S (2005) Lu–Hf geochronology of eclogites from Pfulwe, Zermatt-Saas ophiolite, western Alps. Switzerland. Suppl Geochim Cosmochim Acta 69(10):A305Google Scholar
  64. Mayer A, Abouchami W, Dal Piaz GV (1999) Eocene Sm–Nd age for the eclogitic metamorphism of the Zermatt-Saas ophiolite in Ayas Valley, Western Alps. Eur Union Geosci 10:A809Google Scholar
  65. Messiga B, Tribuzio R, Bottazzi P, Ottolini L (1995) An ion microprobe study of trace element composition of clinopyroxenes from blueschists and eclogitized Fe–Ti-gabbros, Ligurian Alps, northwestern Italy: some petrologic considerations. Geochim Cosmochim Acta 59:59–75Google Scholar
  66. Meth CE, Carlson WD (2005) Diffusion-controlled synkinematic growth of garnet from a heterogeneous precursor at Passo del Sole, Switzerland. Can Mineral 43:157–182Google Scholar
  67. Meyer J (1983) Mineralogie und Petrographie des Allalingabbros. Dissertation Universität Basel, 329pGoogle Scholar
  68. Oberhänsli R (1980) P–T-Bestimmungen anhand von Mineralanalysen in Eklogiten und Glaukophaniten der Ophiolite von Zermatt. Schweiz Mineral Petrogr Mitt 60:215–235Google Scholar
  69. Oberhänsli R (1982) The P–T-history of some pillow lavas from Zermatt. Ofioliti 7:431–436Google Scholar
  70. Oberhänsli R (1994) Subducted and obducted ophiolites of the Central Alps: paleotectonic implications deduced by their distribution and metamorphic imprint. Lithos 33:109–118CrossRefGoogle Scholar
  71. Patrick BE, Evans BW (1989) Metamorphic evolution of the Seward Peninsula blueschist terrane. J Petrol 30:531–555Google Scholar
  72. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in Fortran 77. Cambridge University Press: 933pGoogle Scholar
  73. Reinecke T (1991) Ultrahigh- and high-pressure metamorphism and exhumation of oceanic sediments at Lago di Cignana, Zermatt-Saas zone, western Alps. Eur J Mineral 3:7–17Google Scholar
  74. Reinecke T (1998) Prograde high- to ultrahigh-pressure metamorphism and exhumation of oceanic sediments at Lago di Cignana, Zermatt-Saas zone, western Alps. Lithos 42:147–189CrossRefGoogle Scholar
  75. Roselle GT, Engi M (2002) Ultra high pressure (UHP) terrains: lessons from thermal modeling. Am J Sci 302:410–441CrossRefGoogle Scholar
  76. Rubatto D, Gebauer D, Fanning M (1998) Jurassic formation and Eocene subduction of the Zermatt-Saas Fee ophiolite: implications for the geodynamic evolution of the Central and Western Alps. Contrib Mineral Petrol 132:269–287CrossRefGoogle Scholar
  77. Sassi R, Harte B, Carswell DA, Yujing H (2000) Trace element distribution in Central Dabie eclogites. Contrib Mineral Petrol 139:298–315CrossRefGoogle Scholar
  78. Satori M (1987) Structure de la zone du Combin entre les Diablons et Zermatt. Eclogae Geol Helv 80:789–814Google Scholar
  79. Scherer EE, Cameron KL, Blichert-Toft J (2000) Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace minerals. Geochim Cosmochim Acta 64:3413–3432CrossRefGoogle Scholar
  80. Skora S, Mahlen N, Baumgartner LP, Johnson C, Pilet S (2005) Garnet zoning pattern, growth mechanisms and the development of Lu-depleted halos in eclogites. Suppl Geochim Cosmochim Acta 69(10):A403Google Scholar
  81. Sorensen SS (2005) Accessory minerals, trace elements, fluids and subduction. Suppl Geochim Cosmochim Acta 69(10):A24Google Scholar
  82. Spandler C, Hermann J, Arculus R, Mavrogenes J (2003) Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contrib Mineral Petrol 146:205–222CrossRefGoogle Scholar
  83. Spear FS, Daniel CG (1998) Three-dimensional imaging of garnet porphyroblast sizes and chemical zoning: nucleation and growth history in the garnet zone. Geol Mat Res 1:1–44Google Scholar
  84. Spear FS, Daniel CG (2001) Diffusion control of garnet growth, Harpswell Neck, Maine USA. J Metam Geol 19:179–795CrossRefGoogle Scholar
  85. Spear FS, Kohn MJ, Florence P, Menard T (1991) A model for garnet and plagioclase growth in pelitic schists: implications for thermobarometry and P–T path determinations. J Metam Geol 8:683–696Google Scholar
  86. Spear FS, Selverstone J (1983) Quantitative P–T path from zoned minerals; theory and tectonic applications. Contrib Mineral Petrol 83:348–357CrossRefGoogle Scholar
  87. Stampfli GM, Marchant RH (1997) Geodynamic evolution of the Tethyan margins of the Western Alps. In: Pfiffner OA, Lehner P, Heitzman P, Müller S, Steck A (eds) Deep structures of the Swiss Alps, Results of NRP 20. Birkhäuser Verlag, Basel, pp 223–239Google Scholar
  88. Stampfli GM, Mosar J, Marquer D, Marchant R, Baudin T, Borel G (1998) Subduction and obduction processes in the Swiss Alps. Tectonophysics 296:159–204CrossRefGoogle Scholar
  89. Tirone M, Ganguly J, Dohmen R, Langenhorst F, Hervig R, Becker H-W (2005) Rare earth diffusion kinetics in garnet: experimental studies and applications. Geochim Cosmochim Acta 69:2385–2398CrossRefGoogle Scholar
  90. Tribuzio R, Messiga B, Vannucci R, Bottazzi P (1996) Rare earth element redistribution during high-pressure–low-temperature metamorphism in ophiolitic Fe-gabbros (Liguria, northwest Italy): Implications for light REE mobility in subduction zone. Geology 24:711–714CrossRefGoogle Scholar
  91. van der Klauw SNGC, Reinecke T, Stöckhert B (1997) Exhumation of ultrahigh-pressure metamorphic oceanic crust from Lago di Cignana, Piemontese zone, western Alps: the structural record in metabasites. Lithos 41:79–102CrossRefGoogle Scholar
  92. Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141:687–703Google Scholar
  93. Van Orman JA, Grove TL, Shimizu N, Layne GD (2002) Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib Mineral Petrol 142:416–424Google Scholar
  94. Vance D, O’Nions RK (1990) Isotopic chronometry of zoned garnets: growth kinetics and metamorphic histories. Earth Planet Sci Lett 97:227–240CrossRefGoogle Scholar
  95. Weare JH, Stephens JR, Eugster HP (1976) Diffusion metasomatism and mineral reaction zones: general principles and application to feldspar alteration. Am J Sci 276:767–816CrossRefGoogle Scholar
  96. Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74Google Scholar
  97. Yang P, Rivers T (2002) The origin of Mn and Y annuli in garnet and the thermal dependence of P in garnet and Y in apatite in calc-pelite and pelite, Gagnon terrane, western Labrador. Geol Mat Res 4:1–35Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Susanne Skora
    • 1
    Email author
  • Lukas P. Baumgartner
    • 1
  • Nancy J. Mahlen
    • 2
  • Clark M. Johnson
    • 2
  • Sébastien Pilet
    • 1
    • 4
  • Eric Hellebrand
    • 3
  1. 1.Institute of Mineralogy and GeochemistryUniversity of LausanneLausanneSwitzerland
  2. 2.Department of Geology and GeophysicsUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Max-Planck Institute for ChemistryMainzGermany
  4. 4.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations