Advertisement

Contributions to Mineralogy and Petrology

, Volume 152, Issue 4, pp 421–441 | Cite as

Ultrahigh pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project: I. Petrology and geochemistry of the main hole (0–2,050 m)

  • Zeming ZhangEmail author
  • Yilin Xiao
  • Jochen Hoefs
  • J. G. Liou
  • Klaus Simon
Original Paper

Abstract

The main hole (MH) of the Chinese Continental Scientific Drilling Project (CCSD) in southern Sulu has penetrated into an ultrahigh-pressure (UHP) metamorphic rock slice which consists of orthogneiss, paragneiss, eclogite, ultramafic rock and minor schist. Recovered eclogites have a UHP metamorphic mineral assemblage of garnet + omphacite + rutile ± phengite ± kyanite ± coesite ± epidote. Ultramafic rocks contain garnet + olivine + clinopyroxene + orthopyroxene ± Ti-clinohumite ± phlogopite. Gneisses and schists contain an amphibolite-facies paragenesis, but their zircons have coesite, garnet, omphacite (or jadeite) and phengite inclusions, indicating that eclogites and gneisses have been subjected to in situ UHP metamorphism. Using available geothermobarometers, P–T estimates of 3.1–4.4 GPa and 678–816°C for eclogites were obtained. If surface outcrops and neighboring shallow drill holes are considered together, we suggest that a huge supracrustal rock slab (> 50 km long  ×  100 km wide  ×  5 km deep) was subducted to a depth >  100 km and then exhumed to the surface. The depth interval (0–2,050 m) of the CCSD-MH can be divided into six lithological units. Unit 1 consists of alternating layers of quartz-rich and rutile-rich eclogites, with thin interlayers of gneiss and schist. Eclogites of unit 1 are characterized by Nb, Ta, Sr and Ti depletions, low Mg number and general LREE enrichment. Unit 2 comprises rutile- and ilmenite-rich eclogite and minor “normal” eclogite and is characterized by high TiO2, total Fe, V, Co and Sr, and very low SiO2, alkali, Zr, Ba, Nb, Ta and total REE contents, and LREE-depleted REE patterns with slightly positive Eu anomalies. Unit 3 contains ultramafic rock and minor MgO-rich eclogite. Protoliths of UHP rocks from units 1, 2 and 3 represent a layered mafic to ultramafic intrusion at crustal depth. Units 4 and 6 consist of interlayered eclogite and paragneiss; the eclogites are characterized by Th, U, Nb, Ta and Ti depletion and K enrichment and LREE-enriched REE patterns. Paragneisses show Nb, Ta, Sr and Ti depletions and LREE-enriched REE patterns occasionally with slightly negative Eu anomalies, indicating that their protoliths represent metamorphic supracrustal series. Unit 5 consists mainly of orthogneisses, showing distinct Nb, Ta, Sr and Ti depletions, and LREE-enriched REE patterns with pronounced negative Eu anomalies, suggesting granitic protoliths. In conclusion it is proposed that the southern Sulu UHP belt consists of a series of meta-supracrustal rocks, a layered mafic–ultramafic complex and granites.

Keywords

Kyanite Ultramafic Rock Garnet Peridotite Rare Earth Element Pattern Rare Earth Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Major State Basic Research Development Program (2003CB716501), the National Natural Scientific Foundation of China (40399142 and 40472036), the National Science Foundation of Germany (DFG, Ho 375/22) and the US National Science Foundation (EAR 0003355). We sincerely thank Profs. Xu Zhiqin, Yang Jingsui, Liu Fulai, Shen Kun, You Zhendong, Jin Zhenmin, Gao Yongjun and the scientists from the Geoscience Centre of Göttingen for help during various stages of the research. We thank Prof. Pascal Philippot, an anonymous reviewer, and Borming Jahn for their critical review of the original manuscript.

References

  1. Armstrong JT (1991) Quantitative elemental analysis of individual microparticles with electron beam instruments. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantization. Plenum Press, New York, pp 261–285Google Scholar
  2. Arnason JG, Bird DK, Bernstein S, Rose NM, Manning CE (1997) Petrology and geochemistry of the Kruuse Fjod gabbro complex, east Greenland. Geol Mag 134:67–89CrossRefGoogle Scholar
  3. Barr SM, Hamilton MA, White CE, Samson SD (2000) A Late Neoproterozoic age for the Caledonia Mountain Pluton, a high Ti–V layered gabbro in the Caledonia (Avalon) terrane, southern New Brunswick. Atl Geol 36:157–166Google Scholar
  4. Bohlen SR, Boettcher AL (1982) The quartz-coesite transformations: a pressure determination and the effects of other composition. J Geophys Res 87:7073–7078CrossRefGoogle Scholar
  5. Brandriss M, Bird D (1999) Effects of H2O on phase relations during crystallization of gabbros in the Kap Edvard Holm complex, east Greenland. J Petrol 40:1037–1064CrossRefGoogle Scholar
  6. Cong BL, Wang QC (1996) A review on researches of UHPM rocks in the Dabieshan-Sulu Region. In: Cong BL (ed) Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu region of China. Science Press, Beijing, pp 1–170Google Scholar
  7. Cox RA, Indares A (1999) Transformation Fe–Ti gabbro to coronite, eclogite and amphibolite in the Baie du Nord segment, Manicouagan Imbricate Zone, eastern Grenville Province. J Metamorph Geol 17:537–555CrossRefGoogle Scholar
  8. Cox RA, Dunning GR, Indares A (1998) Petrology and U-Pb geochronology of mafic, high-pressure, metamorphic coronites from the Tshenukutish domain, eastern Grenville Province. Precambrian Res 90:59–83CrossRefGoogle Scholar
  9. Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet–clinopyroxene Fe–Mg exchange equilibrium. Contrib Mineral Petrol 71:13–22CrossRefGoogle Scholar
  10. Enami M, Nagasaki A (2000) Prograde P–T path of kyanite eclogites from Junan in the Sulu ultrahigh-pressure province, eastern China. Island Arc 8:495–474Google Scholar
  11. Enami M, Zang Q, Yin Y (1993) High-pressure eclogites in northern Jiangsu–southern Sangdong province, eastern China. J Metamorph Geol 11:589–603CrossRefGoogle Scholar
  12. Hirajima T, Ishiwateri A, Cong B, Zhang R, Banno S, Nozaka T (1990) Identification of coesite in Mengzhong eclogite from Donghai county, northeastern Jiangsu Province, China. Mineral Mag 54:579–584CrossRefGoogle Scholar
  13. Jahn BM (1998) Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen. In: Hacker BR, Liou JG (eds) When continents collide: geochemistry of ultrahigh-pressure rocks. Kluwer, Dordrecht, pp 203–239Google Scholar
  14. Kennedy CA, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81:2467–2470CrossRefGoogle Scholar
  15. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  16. Krogh E (1988) The garnet–clinopyroxene Fe–Mg geothermometer—reinterpretation of existing experimental data. Contrib Mineral Petrol 99:44–48CrossRefGoogle Scholar
  17. Li TF, Yang JS, Rumble D (2006) Magmatic ultramafic rock in Sulu ultrahigh pressure metamorphic belt: depleted oxygen isotope evidence from main hole of Chinese Continental Scientific Drilling Project. Acta Petrol Sin (in press)Google Scholar
  18. Liou JG, Banno S, Ernst WG (1995) Ultrahigh-pressure metamorphism and tectonics. Island Arc 4:233–239CrossRefGoogle Scholar
  19. Liou JG, Zhang RY, Ernst WG, Liu J, McLimans R (1998) Mineral parageneses in the Piampaludo eclogitic body, Gruppo di Voltri, Western Ligurian Alps. Schweiz Mineral Petrogr Mitt 78:317–335Google Scholar
  20. Liu FL, Xu ZQ, Katayama I, Yang JS, Maruyama S, Liou JG (2001) Mineral inclusions in zircon of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese continental scientific drilling project. Lithos 59:199–215CrossRefGoogle Scholar
  21. Liu FL, Xu ZQ, Xue HM (2004) Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China): SHRIMP U–Pb dating of mineral inclusion-bearing zircons. Lithos 78:411–429CrossRefGoogle Scholar
  22. Liu FL, Xu ZQ, Xue HM, Meng FC (2005a) Ultrahigh-pressure mineral inclusions preserved in zircons separated from eclogite and its country-rocks in the main drill hole of Chinese Continental Scientific Drilling Project (0–4500 m). Acta Petrol Sin 21:277–292Google Scholar
  23. Liu YS, Zhang ZM, Lee CT, Gao S (2005b) Decoupled high-Ti from low-Nb (Zr) of eclogites from the CCSD: implications for magnetite fractional crystallization in basalt chamber. Acta Petrol Sin 21:339–346Google Scholar
  24. Mathison CI (1987) Cyclic units in the Somerset Dam layered gabbro intrusion, southeastern Queensland, Australia. Lithos 20:187–205CrossRefGoogle Scholar
  25. McBirney AR (1989) The Skaergaard layered series: I. Structure and average compositions. J Petrol 30:363–397Google Scholar
  26. Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37:215–224CrossRefGoogle Scholar
  27. Morrison DA, Maczuga DE, Phinney WC, Ashwal LD (1986) Stratigraphy and petrology of the Mulcahy Lake layered gabbro: an Archean intrusion in the Wabigoon Subprovince, Ontario. J Petrol 27:303–341Google Scholar
  28. Parsons I, Brown W, Jacquemin H (1986) Mineral chemistry and crystallization conditions of the Mboutou layered gabbro-syenite-granite complex, north Cameroon. J Petrol 27:1305–1329Google Scholar
  29. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285CrossRefGoogle Scholar
  30. Powell R (1985) Regression diagnostic and robust regression in geothermometer/geobarometer calibration: the garnet–clinopyroxene geothermometer revisited. J Metamorph Geol 3:231–243CrossRefGoogle Scholar
  31. Ravna EK (2000) The garnet–clinopyroxene Fe2+–Mg geothermometer: an updata calibration. J Metamorph Geol 18:211–219CrossRefGoogle Scholar
  32. Ravna K, Milke PT (2001) Geothermobarometry of phengite-kyanite-quartz/coesite eclogites. In: Eleventh annual V. M. Goldschmidt conference, Hot Springs, Virginia, p 3145Google Scholar
  33. Rubatto D, Scambelluri M (2003) U–Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltri Massif, Western Alps). Contrib Mineral Petrol 146:341–355CrossRefGoogle Scholar
  34. Rumble D, Giorgis D, Ireland T, Zhang ZM, Xu HF, Yui TF, Yang JS, Xu ZQ, Liou JG (2002) Low 18O zircons, U–Pb dating, and the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim Cosmochim Acta 66:2299–2306CrossRefGoogle Scholar
  35. Wager RL, Brown GM (1968) Layered igneous rocks. W.H. Freeman, San FranciscoGoogle Scholar
  36. Wallis S, Enami M, Banno S (1999) The Sulu UHP terrane: a review of the petrology and structural geology. Int Geol Rev 41:906–920CrossRefGoogle Scholar
  37. Wiebe RA (1993) The Pleasant Bay layered gabbro-diorite, Coastal Maine: ponding and crystallization of basaltic injections into a silicic magma chamber. J Petrol 34:461–489Google Scholar
  38. Xiao YL, Hoefs J, Alfons M, van den Kerkhof AM, Fiebig J, Zheng YF (2000) Fluid history of UHP metamorphism in Dabie Shan, China: a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contrib Mineral Petrol 139:1–16CrossRefGoogle Scholar
  39. Xiao YL, Hoefs J, van den Kerkhof AM, Simon K, Fiebig J, Zheng YF (2002) Fluid evolution during HP and UHP metamorphism in DabieShan, China: constraints from mineral chemistry, fluid inclusions and stable isotopes. J Petrol 43:1505–1527CrossRefGoogle Scholar
  40. Xiao YL, Zhang ZM, Hoefs J, van den Kerkhof A (2006) Ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project—II. Oxygen isotope and fluid inclusion distributions through vertical sections. Contrib Mineral Petrol (this issue)Google Scholar
  41. Xu ZQ, Yang WC, Zhang ZM, Yang TN (1998) Scientific significance and site-selection researches of the first Chinese Continental Scientific Deep Drillhole. Cont Dyn 3:1–13Google Scholar
  42. Xu ZQ, Zhang ZM, Liu FL, Yang JS, Tang ZM, Cheng SZ, Cai YC, Li TF, Cheng FY (2004) The structure profile of 0–1,200 m in the main borehole, Chinese Continental Scientific Drilling and its preliminary deformation analysis. Acta Petrol Sin 20:53–72Google Scholar
  43. Ya K, Yao YP, Katayama I, Cong BL, Wang QC, Maruyama S (2000) Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos 52:157–164CrossRefGoogle Scholar
  44. Yang A (1994) A revision of the garnet–clinopyroxene Fe2+–Mg exchange geothermometer. Contrib Mineral Petrol 115:467–473CrossRefGoogle Scholar
  45. Yang JJ (2003) Relict edenite in a garnet lherzolite from the Chinese Su-Lu UHP metamorphic terrane: implications for metamorphic history. Am Mineral 88:180–188Google Scholar
  46. Yang JJ, Jahn BM (2000) Deep subduction of mantle-derived garnet peridotites from the Su-Lu UHPM terrane in China. J Metamorph Geol 18:167–180CrossRefGoogle Scholar
  47. You ZD, Han YJ, Yang WR, Zhang ZM, Wei BZ, Liu R (1996) The high-pressure and ultrahigh-pressure metamorphic belt in the east Qinling and Dabie Mountains, China. University of Geoscience Press, WuhanGoogle Scholar
  48. Zhang RY, Liou JG, Cong BL (1994) Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-Lu ultrahigh-pressure metamorphic terrane, China. J Metamorph Geol 12:169–186CrossRefGoogle Scholar
  49. Zhang RY, Hirajima T, Banno S, Cong BL, Liou JG (1995a) Petrology of ultrahigh-pressure rocks from the southern Sulu region, eastern China. J Metamorph Geol 13:659–675CrossRefGoogle Scholar
  50. Zhang RY, Liou JG, Cong BL (1995b) Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. J Petrol 36:1011–1037Google Scholar
  51. Zhang RY, Liou JG, Yang J, Yui T (2000a) Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. J Metamorph Geol 18:149–166CrossRefGoogle Scholar
  52. Zhang ZM, Xu ZQ, Xu HF (2000b) Petrology of ultrahigh-pressure eclogite from the ZK703 drillhole in the Donghai, eastern China. Lithos 52:35–50CrossRefGoogle Scholar
  53. Zhang ZM, Xu ZQ, Xu HF (2003) Petrology of the non-mafic UHP metamorphic rocks from a drillhole in the Southern Sulu orogenic belt, eastern-central China. Acta Geol Sin 77:173–186Google Scholar
  54. Zhang ZM, Xiao YL, Shen K, Gao YJ (2005a) Garnet growth compositional zonation and metamorphic P–T path of the ultrahigh-pressure eclogites from the Sulu orogenic belt, eastern central China. Acta Petrol Sin 21:809–818Google Scholar
  55. Zhang ZM, Xiao YL, Liu FL, Liou JG, Hoefs J (2005b) Petrogenesis of UHP metamorphic rocks from Qinglongshan, Southern Sulu, East-Central China. Lithos 81:189–207CrossRefGoogle Scholar
  56. Zhang ZM, Zhang JF, You ZD, Shen K (2005c) Ultrahigh-pressure metamorphic P–T–t path of the Sulu orogenic belt, Eastern Central China. Acta Petrol Sin 21:257–270Google Scholar
  57. Zhang ZM, Rumble D, Liou J, Xiao YL, Gao YJ (2005d) Oxygen isotope geochemistry of rocks from the Pre-Pilot Hole of the Chinese Continental Scientific Drilling Project (CCSD-PPH1). Am Mineral 90:857–863CrossRefGoogle Scholar
  58. Zhang ZM, Shen K, Xiao YL, Hoefs J, Liou JG, Xu ZQ (2006) Mineral and fluid inclusions in zircon of UHP metamorphic rocks from the CCSD-Main Drill Hole: a record of metamorphism and fluid activity. Lithos (in press)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Zeming Zhang
    • 1
    Email author
  • Yilin Xiao
    • 2
  • Jochen Hoefs
    • 2
  • J. G. Liou
    • 3
  • Klaus Simon
    • 2
  1. 1.Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  2. 2.Geowissenschaftliches Zentrum der Universität GöttingenGöttingenGermany
  3. 3.Department of Geological and Environmental SciencesStanford UniversityStanfordUSA

Personalised recommendations