Contributions to Mineralogy and Petrology

, Volume 149, Issue 5, pp 600–612 | Cite as

Melt inclusions in scoria and associated mantle xenoliths of Puy Beaunit Volcano, Chaîne des Puys, Massif Central, France

  • Séverine Jannot
  • Pierre Schiano
  • Pierre Boivin
Original Paper


In order to characterize the composition of the parental melts of intracontinental alkali-basalts, we have undertaken a study of melt and fluid inclusions in olivine crystals in basaltic scoria and associated upper mantle nodules from Puy Beaunit, a volcano from the Chaîne des Puys volcanic province of the French Massif Central (West-European Rift system). Certain melt inclusions were experimentally homogenised by heating-stage experiments and analysed to obtain major- and trace-element compositions. In basaltic scoria, olivine-hosted melt inclusions occur as primary isolated inclusions formed during growth of the host phase. Some melt inclusions contain both glass and daughter minerals that formed during closed-system crystallisation of the inclusion and consist mainly of clinopyroxene, plagioclase and rhönite crystals. Experimentally rehomogenised and naturally quenched, glassy inclusions have alkali-basalt compositions (with SiO2 content as low as 42 wt%, MgO>6 wt%, Na2O+K2O>5 wt%, Cl~1,000–3,000 ppm and S~400–2,000 ppm), which are consistent with those expected for the parental magmas of the Chaîne des Puys magmatic suites. Their trace-element signature is characterized by high concentration(s) of LILE and high LREE/HREE ratios, implying an enriched source likely to have incorporated small amounts of recycled sediments. In olivine porphyroclasts of the spinel peridotite nodules, silicate melt inclusions are secondary in nature and form trails along fracture planes. They are generally associated with secondary CO2 fluid inclusions containing coexisting vapour and liquid phases in the same trail. This observation and the existence of multiphase inclusions consisting of silicate glass and CO2-rich fluid suggest the former existence of a CO2-rich silicate melt phase. Unheated glass inclusions have silicic major-element compositions, with normative nepheline and olivine components, ~58 wt% SiO2, ~9 wt% total alkali oxides, <3 wt% FeO and MgO. They also have high chlorine levels (>3,000 ppm) but their sulphur concentrations are low (<200 ppm). Comparison with experimental isobaric trends for peridotite indicates that they represent high-pressure (~1.0 GPa) trapped aliquots of near-solidus partial melts of spinel peridotite. Following this hypothesis, their silica-rich compositions would reflect the effect of alkali oxides on the silica activity coefficient of the melt during the melting process. Indeed, the silica activity coefficient decreases with addition of alkalis around 1.0 GPa. For mantle melts coexisting with an olivine-orthopyroxene-bearing mineral assemblage buffering SiO2 activity, this decrease is therefore compensated by an increase in the SiO2 content of the melt. Because of their high viscosity and the low permeability of their matrix, these near-solidus peridotite melts show limited ability to segregate and migrate, which can explain the absence of a chemical relationship between the olivine-hosted melt inclusions in the nodules and in basaltic scoria.


Olivine Fluid Inclusion Nepheline Mantle Xenolith Alkali Basalt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Didier Laporte for supplying the nodule samples, and Jean-Luc Devidal and Michelle Veschambre for technical help. We also acknowledge F. Faure and R. Clocchiatti for helpful discussion. The LA-ICPMS analyses were carried out with the assistance of Gilles Chazot whose help is gratefully acknowledged. Journal reviews by P.J. Wallace and R.L. Nielsen are appreciated. Financial support was provided by the European Community’s Human Potential Programme under contract HPNR-CT-2002-0211 (Euromelt). S. Jannot is also grateful for the Conseil Régional d’Auvergne for funding her Ph.D. thesis.


  1. Allègre CJ, Schiano P, Lewin E (1995) Differences between oceanic basalts by multitrace element ratio topology. Earth Planet Sci Lett 129:1–12CrossRefGoogle Scholar
  2. Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375:308–311CrossRefGoogle Scholar
  3. Baker MB, Hirschmann MM, Wasylenki LE, Stolper EM (1996) Quest for low-degree mantle melts. Nature 381:286CrossRefGoogle Scholar
  4. Barruol G, Granet M (2002) A tertiary asthenospheric flow beneath the southern French Massif Central indicated by upper mantle seismic anisotropy and related to the west Mediterranean extension. Earth Planet Sci Lett 202: 31–47CrossRefGoogle Scholar
  5. Boivin P (1980) Données experimentales préliminaires sur la stabilité de la rhönite à 1 atmosphère. Application aux gisements naturels. Bull Min 103:491–502Google Scholar
  6. Boivin P, Besson JC, BriotT D, Camus G, Goër de Herve A de, Gourgaud A, Labazuy P, Larouzière FD de, Livet M, Mergoil J, Mialler D, Morel JM, Vernet G, Vincent PM (2004) Volcanologie de la Chaîne des Puys Massif Central Français, 4ème édition. le Parc Naturel Régional des Volcans d’Auvergne, 180 pGoogle Scholar
  7. Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83Google Scholar
  8. Downes H, Dupuy C (1987) Textural, isotopic and REE variations in spinel peridotite xenoliths, Massif Central, France. Earth Planet Sci Lett 82:121–135CrossRefGoogle Scholar
  9. Draper DS, Green TH (1997) P-T phase relations of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C–O–H fluid-saturated conditions. J Petrol 38:1187–1224CrossRefGoogle Scholar
  10. Draper DS, Green TH (1999) P-T phase relations of silicic, alkaline, aluminous liquids: new results and applications to mantle melting and metasomatism. Earth Planet Sci Lett 170:255–268CrossRefGoogle Scholar
  11. Falloon TJ, Green DH, O’Neill HStC, Hibberson WO (1997) Experimental tests of low degree peridotite partial melt compositions: implications for the nature of anhydrous near-solidus peridotite melts at 1 Gpa. Earth Planet Sci Lett 152:149–162CrossRefGoogle Scholar
  12. Faure F, Trolliard G, Montel JM, Nicollet C (2001) Nano-petrographic investigation of a mafic xenolith (maar de Beaunit, Massif Central, France). Eur J Mineral 13:27–40CrossRefGoogle Scholar
  13. Féménias O, Mercier JC, Demaiffe D (2001) Pétrologie des xénoliths ultramafiques du puy Beaunit (Massif Central français): un gisement atypique du manteau sous-continental?. C R Acad Sci Paris IIA 332:535–542Google Scholar
  14. Féménias O, Coussaert N, Bingen B, Whitehouse M, C.Mercier J-C, Demaiffe D (2003) A Permian underplating event in late- to post-orogenic tectonic setting. Evidence from the mafic-ultramafic xenoliths from Beaunit (French Massif Central). Chem Geol 199: 293–315CrossRefGoogle Scholar
  15. Ford CE, Russel DG, Craven JA, Fisk MR (1983) Olivine-Liquid equilibria: temperature, pressure and composition dependance of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–265Google Scholar
  16. Foury P (1983) Etudes pétrologiques et expérimentales (à une atmosphère) d’une série alcaline continentale de la Chaîne des Puys (M.C.F.). Thesis Univ. B. Pascal, Clermont-Ferrand II, 150 pGoogle Scholar
  17. Franke W (1989) Variscan plate tectonics in Central Europe-current ideas and open questions. Tectonophysics 169:221–228CrossRefGoogle Scholar
  18. Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 30:1023–1059CrossRefGoogle Scholar
  19. Froidevaux C, Brousse R, Bellon H (1974) Hot Spot in France? Nature 248:749–751Google Scholar
  20. Granet M, Wilson M, Achauer U (1995). Imagine a mantle plume beneath the French Massif Central. Earth Planet Sci Lett 136:281–296CrossRefGoogle Scholar
  21. Hémond C, Devey CW, Chauvel C (1994) Source composition and melting processes in the Society and Austral plumes (South Pacific Ocean): Element and isotope (Sr, Nd, Pb, Th) geochemistry. Chem Geol 115:7–45CrossRefGoogle Scholar
  22. Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressure: determination of compositions of melts segregated from peridotites using aggregates of diamonds. Earth Planet Sci Lett 114:477–489CrossRefGoogle Scholar
  23. Hirschmann MM, Baker MB, Stolper EM (1998) The effect of alkalis on silica content of mantle derived melts. Geochim Cosmochim Acta 62:883–902CrossRefGoogle Scholar
  24. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  25. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229CrossRefGoogle Scholar
  26. Irvine TN, Baragar WR (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548Google Scholar
  27. Kushiro I, Walter MJ (1998) Mg-Fe partitioning between olivine and mafic-ultramafic melts. Geophys Res Lett 25:2337–2340CrossRefGoogle Scholar
  28. Le Maître RW (1976) Some problems of the projection of chemical data into mineralogical classifications. Contrib Mineral Petrol 56:181–189CrossRefGoogle Scholar
  29. Lenoir X, Garrido CJ, Bodinier JL, Dautria JM (2000) Contrasting lithospheric mantle domains beneath the Massif Central (France) revealed by geochemistry of peridotite xenoliths. Earth Planet Sci Lett 181:359–375CrossRefGoogle Scholar
  30. Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–374CrossRefGoogle Scholar
  31. Maumus J, Laporte D, Schiano P (2004) Dihedral angle measurements and infiltration property of SiO2-rich melts in mantle peridotite assemblage. Contrib Mineral Petrol 148:1–12CrossRefGoogle Scholar
  32. Maury RC, Brousse R, Villemant B, Joron JL, Jaffrezic H, Treuil M (1980) Cristallisation fractionnée d’un magma basaltique alcalin: la série de la Chaîne des Puys (Massif Central, France), I. Pétrologie. Bull Minéral 103:250–266Google Scholar
  33. Mercier JC, Nicolas A (1975) Textures and Fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487Google Scholar
  34. Merle O, Michon L (2001) The formation of the West European Rift: a new model as exemplified by the Massif Central area. Bull Soc Géol France 172:213–221Google Scholar
  35. Métrich N, Clocchiatti R (1996) Sulphur abundance and its speciation in oxidized alkaline melts. Geochim Cosmochim Acta 60:4151–4160CrossRefGoogle Scholar
  36. Neumann ER, Wulff-Pedersen E (1997) The origin of highly silicic glass in mantle xenoliths from the Canary Islands. J Petrol 38:1513–1539CrossRefGoogle Scholar
  37. Roedder E (1984) Fluid Inclusions. Rev Mineral 2:620Google Scholar
  38. Roeder PL, Emslie RF (1970). Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289CrossRefGoogle Scholar
  39. Schiano P (2003) Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth Sci Rev 63:121–144CrossRefGoogle Scholar
  40. Schiano P, Bourdon B (1999) On the preservation of mantle information in ultramafic nodules; glass inclusions within minerals versus interstitial glasses. Earth Planet Sci Lett 169:173–188CrossRefGoogle Scholar
  41. Schiano P, Clocchiatti R (1994) Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals. Nature 368:621–624CrossRefGoogle Scholar
  42. Schiano P, Clocchiatti R, Joron JL (1992) Melt and fluid inclusions in basalts and xenoliths from Tahaa island, Society archipelago: evidence for a metasomatised upper mantle. Earth Planet Sci Lett 111:69–82CrossRefGoogle Scholar
  43. Schiano P, Allègre CJ, Dupré B, Lewin E, Joron JL (1993) Variability of trace elements in basaltic suites. Earth Planet Sci Lett 119: 37–51CrossRefGoogle Scholar
  44. Schiano P, Clocchiatti R, Shimizu N, Weis D, Matielli N (1994) Cogenetic silica-rich and carbonate-rich melts trapped in mantle minerals in Kerguelen ultramafic xenoliths : implications for metasomatism in the oceanic upper mantle. Earth Planet Sci Lett 123:167–178CrossRefGoogle Scholar
  45. Schiano P, Clocchiatti R, Shimizu N, Maury RC, Jochum KP, Hofmann AW (1995) Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377:595–600CrossRefGoogle Scholar
  46. Schiano P, Bourdon B, Clocchiatti R, Massare D, Varela ME, Bottinga Y (1998) Low-degree partial melting trends recorded in upper mantle minerals. Earth Planet Sci Lett 160:537–550CrossRefGoogle Scholar
  47. Shaw CSJ (1999) Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 Gpa; further implications for the origin of Si-rich alkaline glass inclusion in mantle xenoliths. Contrib Mineral Petrol 135:114–132CrossRefGoogle Scholar
  48. Sobolev AV, Barsukov VL, Nevsorov VN, Slutsky AB (1980) The formation conditions of the high-magnesian olivines from the monominerallic fraction of Luna 24 regolith. In: Proceedings of the 11th lunar planet science conference, pp 105–116Google Scholar
  49. Sun Ss, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society Special Publication, 42:313–345Google Scholar
  50. Villemant B, Joron JL, Jaffrezic H, Treuil M, Maury R, Brousse R (1980) Cristallisation fractionnée d’un magma basaltique alcalin: la série de la Chaîne des Puys (Massif Central, France), II. Géochim Bull Minéral 103:267–286Google Scholar
  51. Weaver BL (1991) Trace element evidence for the origin of ocean-island basalts. Geology 19:123–126CrossRefGoogle Scholar
  52. Wilson M, Downes H (1992) Mafic alkaline magmatism associated with the European Cenozoic rift system. Tectonophysics 208:173–182CrossRefGoogle Scholar
  53. Woodhead JD (1996) Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook-Austral hotspot. J Volcanol Geotherm Res 72:1–19CrossRefGoogle Scholar
  54. Yaxley GM, Kamenetsky V, Green DH, Falloon TJ (1997) Glasses in mantle xenoliths from western Victoria, Australia, and their relevance to mantle processes. Earth Planet Sci Lett 148:433–446CrossRefGoogle Scholar
  55. Ziegler PA (1982) Geological Atlas of Western and Central Europe. Elsevier, Amsterdam, p 130Google Scholar
  56. Zinngrebe E, Foley SF (1995) Metasomatism in mantle xenoliths from Gees, West Eiffel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment. Contrib Mineral Petrol 122:79–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Séverine Jannot
    • 1
  • Pierre Schiano
    • 1
  • Pierre Boivin
    • 1
  1. 1.Laboratoire Magmas et VolcansOPGC-Université Blaise Pascal-CNRSClermont-FerrandFrance

Personalised recommendations