Contributions to Mineralogy and Petrology

, Volume 150, Issue 6, pp 631–642 | Cite as

A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy

  • Zoltán Zajacz
  • Werner Halter
  • Wim J. Malfait
  • Olivier Bachmann
  • Robert J. Bodnar
  • Marc M. Hirschmann
  • Charles W. Mandeville
  • Yann Morizet
  • Othmar Müntener
  • Peter Ulmer
  • James D. Webster
Original Paper

Abstract

A new approach was developed to measure the water content of silicate glasses using Raman spectroscopy, which is independent of the glass matrix composition and structure. Contrary to previous studies, the compositional range of our studied silicate glasses was not restricted to rhyolites, but included andesitic, basaltic and phonolitic glasses. We used 21 glasses with known water contents for calibration. To reduce the uncertainties caused by the baseline removal and correct for the influence of the glass composition on the spectra, we developed the following strategy: (1) application of a frequency-dependent intensity correction of the Raman spectra; (2) normalization of the water peak using the broad T–O and T–O–T vibration band at 850–1250 cm−1 wavenumbers (instead of the low wavenumber T–O–T broad band, which appeared to be highly sensitive to the FeO content and the degree of polymerization of the melt); (3) normalization of the integrated Si-O band area by the total number of tetrahedral cations and the position of the band maximum. The calibration line shows a ±0.4 wt% uncertainty at one relative standard deviation in the range of 0.8–9.5 wt% water and a wide range of natural melt compositions. This method provides a simple, quick, broadly available and cost-effective way for a quantitative determination of the water content of silicate glasses. Application to silicate melt inclusions yielded data in good agreement with SIMS data.

References

  1. Allen SR (2001) Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea. J Volcanol Geoth Res 105:141–162CrossRefGoogle Scholar
  2. Chabiron A, Pironon J, Massare D (2004) Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy. Contrib Mineral Petr 146(4):485–492CrossRefGoogle Scholar
  3. Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80(3–4):319–328Google Scholar
  4. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petr 131(4):323–346CrossRefGoogle Scholar
  5. Hauri E, Wang JH, Dixon JE, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183(1–4):99–114Google Scholar
  6. Hervig RL, Dunbar NW (1992) Cause of chemical zoning in the Bishop (California) and Bandelier (New Mexico) magma chambers. Earth Planet Sc Lett 111:97–108CrossRefGoogle Scholar
  7. Ihinger PD, Hervig RL, McMillan PF (1994a) Analytical methods for volatiles in glasses. In: Volatiles in Magmas, vol 30. pp 67–121Google Scholar
  8. Ihinger PD, Hervig RL, McMillan PM (1994b) Analytical methods for volatiles in glasses. In: Carroll M, Holloway JR (eds) Volatiles in Magmas, vol 30. Reviews in Mineralogy, Mineralogical Society of America, pp 67–121Google Scholar
  9. Keresztury G (2002) Raman-spectroscopy: theory. In: Chalmers JMG, P.R. (ed) Handbook of Vibrational Spectroscopy, vol 1. pp 71–87Google Scholar
  10. Kagi R, Muntener O, Ulmer P, Ottolini L (2005) Piston-cylinder experiments on H2O undersaturated Fe-bearing systems: An experimental setup approaching f(O2) conditions of natural calc-alkaline magmas. Am Miner 90(4):708–717CrossRefGoogle Scholar
  11. King PL, Vennemann TW, Holloway JR, Hervig RL, Lowenstern JB, Forneris JF (2002) Analytical techniques for volatiles: A case study using intermediate (andesitic) glasses. Am Mineral 87(8–9):1077–1089Google Scholar
  12. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108(1–2):82–92CrossRefGoogle Scholar
  13. Long DA (2002) The Raman Effect: a unified treatment of the theory of Raman scattering by molecules. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  14. Lowenstern JB (1995) Applications of silicate melt inclusions to the study of magmatic volatiles. In: Thompson JFH (ed) Magmas, Fluids, and Ore Deposits, vol Short Course Volume 23. Minerological Association of Canada, Victoria, pp 71–101Google Scholar
  15. Mandeville CW, Webster JD, Rutherford MJ, Taylor BE, Timbal A, Faure K (2002) Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. Am Miner 87(7):813–821Google Scholar
  16. Matson DW, Sharma SK, Philpotts JA (1983) The structure of high-silica alkali-silicate glasses - a Raman-spectroscopic investigation. J Non-Cryst Solids 58(2–3):323–352CrossRefGoogle Scholar
  17. McMillan P, Piriou B, Navrotsky A (1982) A Raman-spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate. Geochim Cosmochim Acta 46(11):2021–2037CrossRefGoogle Scholar
  18. McMillan PF, Wolf GH (1995) Vibrational spectroscopy of silicate liquids. In: Structure, Dynamics and Properties of Silicate Melts, vol 32. pp 247–315Google Scholar
  19. McMillan PF, Wolf GH, Poe BT (1992) Vibrational spectroscopy of silicate liquids and glasses. Chem Geol 96(3–4):351–366CrossRefGoogle Scholar
  20. Morgan GB, London D (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Mineral 81(9–10):1176–1185Google Scholar
  21. Morizet Y, Brooker RA, Kohn SC (2002) CO2 in haplo-phonolite Melt: Solubility, speciation and carbonate complexation. Geochim Cosmochim Acta 66(10):1809–1820CrossRefGoogle Scholar
  22. Muntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141(6):643–658CrossRefGoogle Scholar
  23. Mysen B (1997) Aluminosilicate melts: Structure, composition and temperature. Contrib Mineral Petrol 127(1–2):104–118CrossRefGoogle Scholar
  24. Mysen BO (1999) Structure and properties of magmatic liquids: From haplobasalt to haploandesite. Geochim Cosmochim Acta 63(1):95–112CrossRefGoogle Scholar
  25. Nash WP (1992) Analysis of oxygen with the electron microprobe: Applications to hydrated glass and minerals. Am Mineral 77:453–457Google Scholar
  26. Sharma SK, Cooney TF, Wang ZF, vanderLaan S (1997) Raman band assignments of silicate and germanate glasses using high-pressure and high-temperature spectral data. J Raman Spectrosc 28(9):697–709CrossRefGoogle Scholar
  27. Smith PE, York D, Chen Y, Evensen NM (1996) Single crystal 40Ar/39Ar dating of a late Quaternary paroxysm on Kos, Greece; concordance of terrestrial and marine ages. Geophys Res Lett 23(21):3047–3050CrossRefGoogle Scholar
  28. Thomas R (2000) Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy. Am Mineral 85(5–6):868–872Google Scholar
  29. Wang ZF, Cooney TF, Sharma SK (1993) High-temperature structural investigation of Na2O.0.5Fe2O3.3SiO2 and Na2O.FeO.3SiO2 melts and glasses. Contrib Mineral Petrol 115(1):112–122CrossRefGoogle Scholar
  30. Wang ZF, Cooney TF, Sharma SK (1995) In-situ structural investigation of iron-containing silicate liquids and glasses. Geochim Cosmochim Acta 59(8):1571–1577CrossRefGoogle Scholar
  31. Webster JD, Rebbert CR (2001) The geochemical signature of fluid-saturated magma determined from silicate melt inclusions in Ascension Island granite xenoliths. Geochim Cosmochim Acta 65:123–136CrossRefGoogle Scholar
  32. Westrich HR (1987) Determination of water in volcanic glasses by Karl Fischer titration. Chem Geol 63:335–340CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Zoltán Zajacz
    • 1
  • Werner Halter
    • 1
  • Wim J. Malfait
    • 1
  • Olivier Bachmann
    • 2
  • Robert J. Bodnar
    • 3
  • Marc M. Hirschmann
    • 4
  • Charles W. Mandeville
    • 5
  • Yann Morizet
    • 1
    • 6
  • Othmar Müntener
    • 7
  • Peter Ulmer
    • 8
  • James D. Webster
    • 5
  1. 1.Department of Earth Sciences, Isotope Geochemistry and Mineral ResourcesETH ZürichZürichSwitzerland
  2. 2.Section des Sciences de la TerreUniversité de GenèveGENEVE 4Switzerland
  3. 3.Department of Geosciences, 4044 Derring HallVirginia TechBlacksburgUSA
  4. 4.Department of Geology and GeophysicsUniversity of MinnesotaMinneapolisUSA
  5. 5.Department of Earth and Planetary SciencesA.M.N.H.New YorkUSA
  6. 6.Now at: Laboratory of Planetology and GeodynamicUniversity of NantesNantesFrance
  7. 7.Institute of Geological SciencesUniversity of BernBernSwitzerland
  8. 8.Department of Earth SciencesInstitute for Mineralogy and PetrologyZürichSwitzerland

Personalised recommendations