Contributions to Mineralogy and Petrology

, Volume 150, Issue 6, pp 561–580 | Cite as

4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon

  • J. W. ValleyEmail author
  • J. S. Lackey
  • A. J. Cavosie
  • C. C. Clechenko
  • M. J. Spicuzza
  • M. A. S. Basei
  • I. N. Bindeman
  • V. P. Ferreira
  • A. N. Sial
  • E. M. King
  • W. H. Peck
  • A. K. Sinha
  • C. S. Wei
Original Paper


Analysis of δ18O in igneous zircons of known age traces the evolution of intracrustal recycling and crust-mantle interaction through time. This record is especially sensitive because oxygen isotope ratios of igneous rocks are strongly affected by incorporation of supracrustal materials into melts, which commonly have δ18O values higher than in primitive mantle magmas. This study summarizes data for δ18O in zircons that have been analyzed from 1,200 dated rocks ranging over 96% of the age of Earth. Uniformly primitive to mildly evolved magmatic δ18O values are found from the first half of Earth history, but much more varied values are seen for younger magmas. The similarity of values throughout the Archean, and comparison to the composition of the “modern” mantle indicate that δ18O of primitive mantle melts have remained constant (±0.2‰) for the past 4.4 billion years. The range and variability of δ18O in all Archean zircon samples is subdued (δ18O(Zrc)=5–7.5‰) ranging from values in high temperature equilibrium with the mantle (5.3± 0.3‰) to slightly higher, more evolved compositions (6.5–7.5‰) including samples from: the Jack Hills (4.4–3.3 Ga), the Beartooth Mountains (4.0–2.9 Ga), Barberton (3.5–2.7 Ga), the Superior and Slave Provinces (3.0 to 2.7 Ga), and the Lewisian (2.7 Ga). No zircons from the Archean have been analyzed with magmatic δ18O above 7.5‰. The mildly evolved, higher Archean values (6.5–7.5‰) are interpreted to result from exchange of protoliths with surface waters at low temperature followed by melting or contamination to create mildly elevated magmas that host the zircons. During the Proterozoic, the range of δ18O(Zrc) and the highest values gradually increased in a secular change that documents maturation of the crust. After ∼1.5 Ga, high δ18O zircons (8 to >10‰) became common in many Proterozoic and Phanerozoic terranes reflecting δ18O(whole rock) values from 9 to over 12‰. The appearance of high δ18O magmas on Earth reflects nonuniformitarian changes in the composition of sediments, and rate and style of recycling of surface-derived material into magmas within the crust.


Zircon Continental Crust Detrital Zircon Volcanogenic Massive Sulfide Deposit Igneous Zircon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the following people who have provided samples, assisted, or collaborated in studies of these zircons: John Aleinikoff, Tucker Barrie, Pat Bickford, Lance Black, Otto van Breemen, James Carl, Jeff Chiarenzelli, Jim Chen, Fernando Corfu, Louise Corriveau, Tony Davidson, Don Davis, John Eiler, Brent Elliott, Ron Emslie, Dave Farber, Frank Florence, Carrie Gilliam, Matthew Grant, Mike Hamilton, Hans Hinke, Martha House, Yngvar Isachsen, Paul Karabinos, Yaron Katzir, Alan Kennedy, Peter Kinny, Nami Kitchen, Bart Kowalis, Tom Krogh, Dunyi Liu, Jim Mattinson, Jim McLelland, Dave Mogk, Salma Monani, Sam Mukasa, Sasha Nemchin, Randy Parrish, Lola Pereira, Bob Pidgeon, Helcio Prazeres Filho, Kent Ratajeski, Greg Roselle, Jason Saleeby, Dan Schulze, Danny Stockli, Matti Vaasjoki, Randy Van Schmus, Lee Silver, Sorena Sorensen, Beth Valaas, Julie Vry, Simon Wilde, Joe Wooden, and Jim Wright. Colin Graham and John Craven collaborated in ion probe studies of δ18O at the Edinburgh Ion Microprobe Facility, which is supported by NERC. Brian Hess aided with sample preparation. Mary Diman drafted the figures. Vicki Bennett and Jan Kramers made helpful reviews. This research was supported by the National Science Foundation (EAR93-04372, 96-28142, 99-02973, 02-07340) and the U.S. Department of Energy (93ER14389).

Supplementary material

410_2005_25_MOESM1_ESM.pdf (192 kb)
Supplementary material


  1. Armstrong RL (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth earth. Phil Trans Roy Soc Lond A 301:443CrossRefGoogle Scholar
  2. Armstrong RL (1991) The persistent myth of crustal growth. Austral J Earth Sci 38:613–630CrossRefGoogle Scholar
  3. Balsley SD, Gregory RT (1998) Low-δ18O silicic magmas: why are they so rare? Earth Planet Sci Lett 162:123–136CrossRefGoogle Scholar
  4. Bennett VC (2003) Compositional evolution of the mantle. Treat Geochem 2:493–519Google Scholar
  5. Bindeman IN, Valley JW (2000) Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology 28:719–722CrossRefGoogle Scholar
  6. Bindeman IN, Valley JW (2001) Low-δ18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42:1491–1517CrossRefGoogle Scholar
  7. Bindeman IN, Valley JW (2002) Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contrib Mineral Petrol 144:185–205CrossRefGoogle Scholar
  8. Bindeman IN, Valley JW (2003) Rapid generation of both high- and low-δ18O, large-volume silicic magmas at the Timber Mountain/Oasis Valley caldera complex, Nevada. Geol Soc Am Bull 115:581–595CrossRefGoogle Scholar
  9. Bindeman IN, Ponomareva VV, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochim Cosmochim Acta 68:841–865CrossRefGoogle Scholar
  10. Blatt H (1987) Perspectives: oxygen isotopes and the origin of quartz. J Sed Pet 57:373–377Google Scholar
  11. Bleeker W (2002) Archaean tectonics: a review, with illustrations from the Slave Craton. Geol Soc Spec Pub 199:151–181Google Scholar
  12. Bowring SA, Housh T (1995) The Earth’s early evolution. Science 269:1535–1540PubMedCrossRefGoogle Scholar
  13. Burdett JW, Grotzinger JP, Arthur MA (1990) Did major changes in the stable-isotope composition of Proterozoic seawater occur? Geology 18:227–230CrossRefGoogle Scholar
  14. Campbell IH (2003) Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. Am J Sci 303:319–351CrossRefGoogle Scholar
  15. Cavosie AJ, Wilde SA, Liu D, Weiblen PW, Valley JW (2004) Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348−1576 Ma) magmatism. Precam Res 135:251–279CrossRefGoogle Scholar
  16. Cavosie AJ, Valley JW, Wilde SA, EIMF (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681CrossRefGoogle Scholar
  17. Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Austral J Ear Sci 48:489–499CrossRefGoogle Scholar
  18. Chen D, Deloule E, Cheng H, Xia Q, Wu Y (2003) Preliminary study of microscale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks: ion probe in situ analyses. Chin Sci Bull 48:1670–1678CrossRefGoogle Scholar
  19. Compston W, Pidgeon RT (1986) Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321:766–769CrossRefGoogle Scholar
  20. Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37CrossRefGoogle Scholar
  21. Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163:97–108CrossRefGoogle Scholar
  22. Condie KC (2000) Episodic continental growth models: after thoughts and extensions. Tectonophysics 322:53–162CrossRefGoogle Scholar
  23. Condie KC, Des Marais DJ, Abbott D (2001) Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? Precam Res 106:239–260CrossRefGoogle Scholar
  24. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, Reviews in Mineralogy and Geochemistry, vol 43. Mineralogical Society of America/Geochemical Society, Washington, DC, pp 319–364Google Scholar
  25. Eiler JM, McInnes B, Valley JW, Graham CM, Stolper EM (1998) Oxygen isotope evidence for slab-derived fluids in the sub-arc mantle. Nature 393:777–781CrossRefGoogle Scholar
  26. Elliott BA, Peck WH, Ramo OT, Vaasjoki M, Nironen M (2005) Magmatic zircon oxygen isotopes of 1.88−1.87 Ga orogenic and 1.65−1.54 Ga anorogenic magmatism in Finland. Mineral Petrol (in press)Google Scholar
  27. Eriksson KA (1995) Crustal growth, surface processes, and atmospheric evolution on the early Earth. Geol Soc Spec Pub 95:11–25Google Scholar
  28. Ferreira VP, Valley JW, Sial AN, Spicuzza MJ (2003) Oxygen isotope compositions and magmatic epidote from two contrasting metaluminous granitoids, NE Brazil. Contrib Mineral Petrol 145:205–216CrossRefGoogle Scholar
  29. Gilliam CE, Valley JW (1997) Low δ18O magma, Isle of Skye, Scotland: evidence from zircons. Geochim Cosmochim Acta 61:4975–4981CrossRefGoogle Scholar
  30. Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755Google Scholar
  31. Hanchar JM, Hoskin PWO (eds) (2003) Zircon. Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America/Geochemical Society, Washington, DC, p 500Google Scholar
  32. Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120:95–114Google Scholar
  33. Hildreth W, Christiansen RL, O’Neil JR (1984) Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau volcanic field. J Geophys Res 89:8339–8369Google Scholar
  34. Hurley PM, Rand JR (1969) Pre-drift continental nuclei. Science 164:1229–1242CrossRefGoogle Scholar
  35. Kemp AIS, Hawkesworth CJ (2003) Granitic perspectives on the generation and secular evolution of the continental crust. Treat Geochem 3:349–410Google Scholar
  36. King EM (1997) Oxygen isotope study of igneous rocks from the Superior Province, Canada. MSc Thesis, University of WisconsinGoogle Scholar
  37. King EM (2001) Oxygen isotope study of magmatic source and alteration of granitic rocks in the western United States and the Superior Province, Canada. PhD Thesis, University of WisconsinGoogle Scholar
  38. King EM, Valley JW (2001) The source, magmatic contamination, and alteration of the Idaho Batholith. Contrib Mineral Petrol 142:72–88CrossRefGoogle Scholar
  39. King EM, Barrie CT, Valley JW (1997) Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek Mine, Ontario: magmatic values are preserved in zircon. Geology 25:1079–1082CrossRefGoogle Scholar
  40. King EM, Valley JW, Davis DW, Edwards GR (1998) Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: Indicator of magmatic source. Precam Res 92:365–387CrossRefGoogle Scholar
  41. King EM, Valley JW, Davis DW (2000) Oxygen isotope evolution of volcanic rocks at the Sturgeon Lake volcanic complex, Ontario. Can J Earth Sci 37:39–50CrossRefGoogle Scholar
  42. King EM, Valley JW, Davis DW, Kowallis BJ (2001) Empirical determination of oxygen isotope fractionation factors for titanite with respect to zircon and quartz. Geochim Cosmochim Acta 65:3165–3175CrossRefGoogle Scholar
  43. King EM, Valley JW, Stockli DF, Wright JE (2004) Oxygen isotope trends of granitic magmatism in the Great Basin: location of the Precambrian craton boundary as reflected in zircons. Geol Soc Am Bull 116:451–462CrossRefGoogle Scholar
  44. Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol Soc Am Bull 115:566–580CrossRefGoogle Scholar
  45. Kramers JD (2002) Global modeling of continent formation and destruction through geological time and implications for CO2 drawdown in the Archaean Eon. Geol Soc Spec Pub 199:259–274Google Scholar
  46. Kröner A, Layer PW (1992) Crust formation and plate motion in the early Archean. Science 256:1405–1411CrossRefGoogle Scholar
  47. Lackey JS (2005) The magmatic and alteration history of the Sierra Nevada batholith as recorded by oxygen isotope ratios in zircon, titanite, garnet, and quartz. PhD Thesis, University of WisconsinGoogle Scholar
  48. Lackey JS, Valley JW, Saleeby JB (2005a) Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet Sci Lett 235:315–330CrossRefGoogle Scholar
  49. Lackey JS, Valley JW, Hinke HJ (2005b) Deciphering the source and contamination history of peraluminous magmas using δ18O of accessory minerals: examples from garnet-bearing granitoids of the Sierra Nevada batholith. Contrib Mineral Petrol (in press)Google Scholar
  50. Land LS, Lynch FL (1996) δ18O values of mudrocks: more evidence for an 18O-buffered ocean. Geochim Cosmochim Acta 60:3347–3352CrossRefGoogle Scholar
  51. Longstaffe FJ, Schwarcz HP (1977) 18O/16O of Archean clastic metasedimentary rocks: a petrogenetic indicator for Archean gneisses? Geochim Cosmochim Acta 41:1303–1312CrossRefGoogle Scholar
  52. Lowe DR (1992) Major events in the geological development of the Precambrian Earth. In: Schopf JW, Klein C (eds) The Proterozoic biosphere a multidisciplinary study. Cambridge University Press, Cambridge, pp 67–75Google Scholar
  53. Lowe DR (1994) Archean greenstone-related sedimentary rocks. Dev Precam Geol 11:121–169Google Scholar
  54. Lowe DR, Tice MM (2004) Geologic evidence for Archean atmospheric and climatic evolution: fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology 32:493–496CrossRefGoogle Scholar
  55. Lowry D, Appel PWU, Rollinson HR (2003) Oxygen isotopes of an early Archaean layered ultramafic body, southern West Greenland: implications for magma source and post-intrusion history. Precam Res 126:273–288CrossRefGoogle Scholar
  56. Lugovaya IP, Krivdik SG, Ponomarenko AN (2001) Oxygen isotope composition of zircons in granites and alkaline rocks of the Ukrainian Shield [Russian]. Mineral J 23:38–41Google Scholar
  57. Marcantonio F, McNutt RH, Dickin AP, Heaman LM (1990) Isotopic evidence for the crustal evolution of the Frontenac Arch in the Grenville Province of Ontario, Canada. Chem Geol 83:297–314CrossRefGoogle Scholar
  58. McLennan SM, Taylor SR, Hemming SR (2005) Composition, differentiation, and evolution of continental crust: constraints from sedimentary rocks and heat flow. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 93−135Google Scholar
  59. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the earth’s surface 4,300 Myr ago. Nature 409:178–181CrossRefPubMedGoogle Scholar
  60. Monani S, Valley JW (2001) Oxygen isotope ratios of zircon: magma genesis of low δ18O granites from the British Tertiary igneous province, western Scotland. Earth Planet Sci Lett 184:377–392CrossRefGoogle Scholar
  61. Muehlenbachs K (1998) The oxygen isotopic composition of the oceans, sediments and the seafloor. Chem Geol 145:263–273CrossRefGoogle Scholar
  62. Mueller PA, Wooden JL, Nutman AP (1992) 3.96 Ga zircons from an Archean quartzite, Beartooth Mountains, Montana. Geology 20:327–330CrossRefGoogle Scholar
  63. Mueller PA, Wooden JL, Nutman AP, Mogk DW (1998) Early Archean crust in the northern Wyoming Province: evidence from U-Pb ages of detrital zircons. Precam Res 91:295–307CrossRefGoogle Scholar
  64. O’Connor YL, Morrison J (1999) Oxygen isotope constraints on the petrogenesis of the Sybille Intrusion of the Proterozoic Laramie anorthosite complex. Contrib Mineral Petrol 136:81–91CrossRefGoogle Scholar
  65. O’Neil JR, Chappell BW (1977) Oxygen and hydrogen isotope relations in the Berridale batholith. J Geol Soc Lond 133:559–571CrossRefGoogle Scholar
  66. O’Neil JR, Shaw SE, Flood RH (1977) Oxygen and hydrogen isotope compositions as indicators of granite genesis in the New England Batholith, Australia. Contrib Mineral Petrol 62:313–328CrossRefGoogle Scholar
  67. Pan Y, Fleet ME (1995) Geochemistry and origin of cordierite-orthoamphibole gneiss and associated rocks at an Archaean volcanogenic massive sulphide camp; Manitouwadge, Ontario, Canada. Precam Res 74:73–89CrossRefGoogle Scholar
  68. Peck WH (2000) Oxygen isotope studies of Grenville Metamorphism and Magmatism. PhD Thesis, University of Wisconsin-MadisonGoogle Scholar
  69. Peck WH, Valley JW (2005) The Archean environment. In: Gornitz V (ed) Encyclopedia of paleoclimatology and Ancient Environments. Kluwer, New York (accepted)Google Scholar
  70. Peck WH, King EM, Valley JW (2000) Oxygen isotope perspective on Precambrian crustal growth and maturation. Geology 28:363–366CrossRefGoogle Scholar
  71. Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the early Archean. Geochim Cosmochim Acta 65:4215–4229CrossRefGoogle Scholar
  72. Peck WH, Valley JW, Corriveau L, Davidson A, McLelland J, Farber D (2004) Constraints on terrane boundaries and origin of 1.18 to 1.13 Ga granitoids of the Southern Grenville Province from oxygen isotope ratios of zircon. In: Tollo RP, McLelland J, Corriveau L, Bartholomew MJ (eds) Proterozoic evolution of the Grenville orogen in North America, Memoir, vol 197. Geological Society of America, Boulder, CO, pp 163–181Google Scholar
  73. Perry EC, Lefticariu L (2003) Formation and geochemistry of Precambrian cherts. Treat Geochem 7:99–113Google Scholar
  74. Rumble D, Giorgis D, Ireland T, Zhang Z, Xu H, Yui T-F, Yang J, Xu Z, Liou J-G (2002) Low δ18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim Cosmochim Acta 66:2299–2306CrossRefGoogle Scholar
  75. Savin SM, Epstein S (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta 34:5–42Google Scholar
  76. Shieh YN (1985) High−18O granitic plutons from the Frontenac axis, Grenville Province of Ontario, Canada. Geochim Cosmochim Acta 49:117–123CrossRefGoogle Scholar
  77. Shieh YN, Schwarcz HP (1978) The oxygen isotope composition of the surface crystalline rocks of the Canadian Shield. Can J Earth Sci 15:1773–1782Google Scholar
  78. Shields G, Veizer J (2002) Precambrian marine carbonate isotope database: Version 1.1. Geochem Geophys Geosyst 3. DOI 10.1029/2001GC000266Google Scholar
  79. Shirey SB, Hanson GN (1984) Mantle-derived Archaean monzodiorites and trachyandesites. Nature 310:222–224CrossRefGoogle Scholar
  80. Simon L, Lecuyer C (2002) Continental recycling: the oxygen isotope point of view. Geochim Cosmochim Acta 66:717Google Scholar
  81. Stein M, Hoffman AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68CrossRefGoogle Scholar
  82. Stern RA, Hanson GN (1991) Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J Petrol 32:201–238Google Scholar
  83. Sylvester PJ (1994) Archean granite plutons. Dev Precam Geol 11:261–314CrossRefGoogle Scholar
  84. Sylvester PJ (ed) (2000) Continent formation, growth and recycling. Tectonophysics, vol 322. Elsevier, Amsterdam, pp 1–202Google Scholar
  85. Taylor HP (1986) Igneous rocks: II. Isotopic case studies of circumpacific magmatism. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes, Reviews in Mineralogy, vol 16. Mineralogical Society of America, p 273–317Google Scholar
  86. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Edinburgh, p 312Google Scholar
  87. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265CrossRefGoogle Scholar
  88. Taylor HP, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes, Reviews in Mineralogy, vol 16. Mineralogical Society of America, pp 227–271Google Scholar
  89. Trail D, Mojzsis SJ, Harrison TM (2005) Hadean crustal processes revealed from oxygen isotopes and U-Th-Pb depth profiling of pre-4 Ga detrital zircons from Western Australia. Lunar Planet Sci Conf, Houston, XXXVI: 2223, abstractGoogle Scholar
  90. Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America/Geochemical Society, Washington, DC, pp 343–385Google Scholar
  91. Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett 126:187–206CrossRefGoogle Scholar
  92. Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231CrossRefGoogle Scholar
  93. Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability Among Mantle Melts. Contrib Mineral Petrol 133:1–11CrossRefGoogle Scholar
  94. Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354CrossRefGoogle Scholar
  95. Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67:3257–3266CrossRefGoogle Scholar
  96. Veizer J (1983) Geologic evolution of the archean-early proterozoic Earth. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 240–259Google Scholar
  97. Veizer J, Jansen SL (1985) Basement and sedimentary recycling: 2, Time dimension to global tectonics. J Geol 93:625–643Google Scholar
  98. Veizer J, Mackenzie FT (2003) Evolution of sedimentary rocks. Treat Geochem 7:369–407Google Scholar
  99. Walker JCG, Lohmann KC (1989) Why the oxygen isotopic composition of seawater changes with time. Geo Res Lett 16:323–326Google Scholar
  100. Wallmann K (2001) The geological water cycle and the evolution of marine δ18O values. Geochim Cosmochim Acta 65:2469–2485CrossRefGoogle Scholar
  101. Wei C-S, Zheng Y-F, Zhao Z-F, Valley JW (2002) Oxygen and neodymium isotope evidence for recycling of juvenile crust in Northeast China. Geology 30:375–378CrossRefGoogle Scholar
  102. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178CrossRefPubMedGoogle Scholar
  103. Windley BF (1995) The evolving continents. John Wiley and Sons, Chichester, UK, p 526Google Scholar
  104. de Wit MJ (1998) On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precam Res 91:181–226CrossRefGoogle Scholar
  105. Zhao Z-F, Zheng Y-F, Wei C-S, Wu Y-B (2004) Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophys Res Lett 31. DOI 10:1029/2004GL021061Google Scholar
  106. Zheng Y-F, Wu Y-B, Chen F-K, Gong B, Li L, Zhao Z-F (2004) Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta 68:4145–4165CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. W. Valley
    • 1
    Email author
  • J. S. Lackey
    • 9
    • 1
  • A. J. Cavosie
    • 10
    • 1
  • C. C. Clechenko
    • 1
  • M. J. Spicuzza
    • 1
  • M. A. S. Basei
    • 2
  • I. N. Bindeman
    • 3
  • V. P. Ferreira
    • 4
  • A. N. Sial
    • 4
  • E. M. King
    • 5
  • W. H. Peck
    • 6
  • A. K. Sinha
    • 7
  • C. S. Wei
    • 8
  1. 1.Department of GeologyUniversity of WisconsinMadisonUSA
  2. 2.Department de Mineralogia GeotectonicaUniversity Sao PauloSao PauloBrazil
  3. 3.Department of Geological SciencesUniversity of OregonEugeneUSA
  4. 4.NEG-LABISE, Department of GeologyFederal University of PernambucoRecifeBrazil
  5. 5.Department of Geography and GeologyIllinois State UniversityNormalUSA
  6. 6.Department of GeologyColgate UniversityHamiltonUSA
  7. 7.Virginia Polytechnic Inst.BlacksburgUSA
  8. 8.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefei, AnhuiChina
  9. 9.Department of GeologyCollege of WoosterWoosterUSA
  10. 10.Department of GeologyUniversity of Puerto RicoMayaguezUSA

Personalised recommendations