Contributions to Mineralogy and Petrology

, Volume 149, Issue 2, pp 233–245 | Cite as

Insight into the origin of gabbro-dioritic cumulophyric aggregates from silicic ignimbrites: Sr and Ba zoning profiles of plagioclase phenocrysts from Oligocene Ethiopian Plateau rhyolites

  • Pierre BarbeyEmail author
  • Dereje Ayalew
  • Gezahegn Yirgu
Original Paper


The Were Ilu ignimbrites are unlike other Oligocene rhyolites from the Ethiopian continental flood basalt province, in that they consist of plagioclase (An19–54), augite, pigeonite and Ti-magnetite, instead of anorthoclase, sodic sanidine, aegirine-augite and ilmenite. The minerals occur as (micro-)phenocrysts isolated within a glassy matrix or forming gabbroic and dioritic cumulophyric clots. Plagioclase is partially re-melted (sieve-textures with infilling glass). It is zoned with sudden changes in composition. However, the bulk zoning is normal with An-rich core (An45–54) and more sodic rim (An19–28). Ba and Sr concentration profiles of two plagioclase phenocrysts show a bulk rimward increase with compositions ranging from 250 ppm to 1,060 ppm and from 400 ppm to 1,590 ppm, respectively. The matrix glass has low CaO content (0.1–0.5 wt.%), a peralkalinity index of 0.79–1.04 and average Sr and Ba contents of 48±22 and 525±129 ppm, respectively. Geochemical modelling of Ba and Sr zoning profiles of plagioclase, based on experimental constraints, suggests that the cumulophyric clots can be derived from fractional crystallisation associated with limited assimilation (8 wt.%) from melts slightly less evolved than their rhyolitic matrix glass. These clots are not witnesses of intermediate magmas allowing the Daly Gap to be filled, but are cumulates differentiated from rhyodacitic melt. This indicates that parental magmas were stored in crustal magma chambers where they differentiated before being erupted at the surface.


Fractional Crystallisation Flood Basalt Plagioclase Phenocryst Silicic Magma Crustal Magma Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to J. Ravaux for assistance in electron microprobe analyses, and to E. Deloule for ion probe data. We are grateful to B. Scaillet and an anonymous reviewer for their critical review of the manuscript. This research was founded by the Institut National des Sciences de l’Univers (INSU-CNRS) and University of Addis Abeba. CRPG contribution 1721.


  1. Andersen DJ, Lindsley DH (1988) Internally consistent solution models for the Fe–Mg–Mn–Ti oxides: Fe–Ti oxides. Am Mineral 73:714–726Google Scholar
  2. Asrat A, Barbey P, Gleizes G (2001) The Precambrian geology of Ethiopia: a review. Afr Geosci Rev 8:271–288Google Scholar
  3. Ayalew D (1999) Pétrologie et géochimie des ignimbrites des hauts plateaux éthiopiens: source, chronologie et impact environnemental. Unpublished Thesis, INPL, Nancy, p 176Google Scholar
  4. Ayalew D, Yirgu G (2003) Crustal contribution to the genesis of Ethiopian Plateau rhyolitic ignimbrites: basalt and rhyolite geochemical provinciality. J Geol Soc Lond 160:47–56Google Scholar
  5. Ayalew D, Yirgu G, Pik R (1999) Geochemical and isotopic (Sr, Nd and Pb) characteristics of volcanic rocks from southwestern Ethiopia. J Afr Earth Sci 29:381–391CrossRefGoogle Scholar
  6. Ayalew D, Cioni R, Cristiani C, De Rosa R, Marianelli P, Mazzuoli R, Yirgu G, Bompressi E (2001) Trachyte-pantellerite syneruptive magma mixing: evidences from a caldera forming ignimbrite at Gedemsa (Main Ethiopian Rift). Federazione Ital Sci Terra, Geoitalia 2001, Pescara, AbstractGoogle Scholar
  7. Ayalew D, Barbey P, Marty B, Reisberg L, Yirgu G, Pik R (2002) Source, genesis and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts. Geochim Cosmochim Acta 66:1429–1448CrossRefGoogle Scholar
  8. Baker BH, Goles GG, Leeman WP, Lindstrom MM (1977) Geochemistry and petrogenesis of a basalt-benmoreite-trachyte suite from the southern part of the Gregory Rift, Kenya. Contrib Mineral Petrol 64:303–332CrossRefGoogle Scholar
  9. Baker JA, Macpherson CG, Menzies MA, Thirlwall MF, Al-Kadasi M, Mattey DP (2000) Resolving crustal and mantle contributions to continental flood volcanism, Yemen: constraints from mineral oxygen isotope data. J Petrol 41:1805–1820CrossRefGoogle Scholar
  10. Barberi F, Ferrara G, Santacroce R, Treuil M, Varet J (1975) A transitional basalt-pantellerite sequence of fractional crystallisation, the Boina Centre (Afar Rift, Ethiopia). J Petrol 16:22–56Google Scholar
  11. Baschek G, Johannes W (1995) The estimation of NaSi-CaAl interdiffusion rates in peristerite by homogeneization experiments. Eur J Mineral 7:295–307Google Scholar
  12. Bellieni G, Brotzu P, Comin-Chiaramonti P, Ernesto M, Melfi A, Pacca IG, Piccirillo EM (1984) Flood basalt to rhyolite suites in southern Parana Plateau (Brazil): paleomagnetism, petrogenesis and geodynamic implications. J Petrol 25:579–618Google Scholar
  13. Bellieni G, Comin-Chiaramonti P, Marques LS, Melfi AJ, Nardy AJR, Papattrechas C, Piccirillo EM, Roisenberg A, Stolfa D (1986) Petrogenetic aspects of acid and basaltic lavas from the Parana Plateau (Brazil): geological, mineralogical and petrological relationships. J Petrol 27:915–944Google Scholar
  14. Betton PJ (1979) Isotopic evidence for crustal contamination in the Karoo rhyolites of Swaziland. Earth Planet Sci Lett 45: 263–274CrossRefGoogle Scholar
  15. Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209CrossRefGoogle Scholar
  16. Bonnefoi C, Provost A, Albarède F (1995) The Daly Gap as a magmatic catastrophe. Nature 378:270–272Google Scholar
  17. Bowen NL (1945) Phase equilibria bearing on the origin and differentiation of the alkaline rocks. Am J Sci 243A:75–89Google Scholar
  18. Brophy JG (1991) Composition gaps, critical cristallinity and fractional crystallisation in orogenic (calc-alkaline) magmatic system. Contrib Mineral Petrol 109:173–182CrossRefGoogle Scholar
  19. Campbell IH (1985) The difference between oceanic and continental tholeiites: a fluid dynamic explanation. Contrib Mineral Petrol 91:37–43CrossRefGoogle Scholar
  20. Cawthorn RG, Walraven F (1998) Emplacement and crystallisation time for the Bushveld complex. J Petrol 39:1669–1687CrossRefGoogle Scholar
  21. Chayes F (1963) Relative abundance of intermediate members of the oceanic basalt-trachyte association. J Geophysl Res 68:1519–1534Google Scholar
  22. Chazot G, Bertrand H (1995) Genesis of silicic magmas during Tertiary continental rifting in Yemen. Lithos 36:69–83CrossRefGoogle Scholar
  23. Clague DA (1978) The oceanic basalt-trachyte association: an explanation of the Daly Gap. J Geol 86:739–743Google Scholar
  24. Cleverly RW, Betton PJ, Bristow JW (1984) Geochemistry and petrogenesis of the volcanic rocks of the Lebombo rhyolites. In Petrogenesis of the volcanic rocks of the Karoo province. Geol Soc S Afr Spec Publ 13:171–195Google Scholar
  25. Cochran JR (1981) The Gulf of Aden: structure and evolution of a young ocean basin and continental margin. J Geophys Res 86:263–288Google Scholar
  26. Coulié E, Quidelleur X, Gillot PY, Courtillot V, Lefèvre JC, Chiesa S (2003) Comparative K–Ar and Ar–Ar dating of Ethiopian and Yemenite Oligocene volcanism: implications for timing and duration of the Ethiopian traps. Earth Planet Sci Lett 206:477–492CrossRefGoogle Scholar
  27. Dall’Agnoll R, Scaillet B, Pichavant M (1999) An experimental study of a lower Proterozoic A-type granite from the eastern Amazonian Craton, Brazil. J Petrol 40:1673–1698CrossRefGoogle Scholar
  28. Davidson JP, Wilson IR (1989) Evolution of an alkali basalt-trachyte suite from Jebel Marra volcano, Sudan, through assimilation and fractional crystallisation. Earth Planet Sci Lett 95:141–160CrossRefGoogle Scholar
  29. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  30. Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughtout east Africa resulting from the impact of a single plume. Nature 395:788–791Google Scholar
  31. Ebinger CJ, Yemane T, Woldegabriel G, Aronson JL, Walter RC (1993) Late Eocene-Recent volcanism and rifting in the southern main Ethiopian rift. J Geol Soc London 150:99–108Google Scholar
  32. Garland F, Hawkesworth CJ, Mantovani MSM (1995) Description and petrogenesis of the Parana rhyolites, Southern Brazil. J Petrol 36:1193–1227Google Scholar
  33. George R, Rogers N, Kelly S (1998) Earliest magmatism in Ethiopia: evidence for two mantle plumes in one flood basalt province. Geology 26:923–926CrossRefGoogle Scholar
  34. Gill J (1981) Orogenic andesites and plate tectonics. Springer, Berlin Heidelberg New York, p 390Google Scholar
  35. Girdler RW, Styles P (1974) Two stage Red Sea floor spreading. Nature 247:1–11Google Scholar
  36. Grove TL, Bryan WB (1983) Fractionation of pyroxene-phyric MORB at low pressure: An experimental study. Contrib Mineral Petrol 84:293–309Google Scholar
  37. Hart WK, Woldegabriel G, Walter RC, Mertzman SA (1989) Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. J Geophys Res 94:7731–7748Google Scholar
  38. Hawkesworth CJ, Blake S, Evans P, Hughes R, Macdonald R, Thomas LE, Turner SP, Zellmer G (2000) Time scale of crystallisation in magma chambers—integrating physical, isotopic and geochemical perspectives. J Petrol 41:991–1006CrossRefGoogle Scholar
  39. Hofmann C, Courtillot V, Féraud G, Rochette P, Yirgu G, Ketefo E, Pik R (1997) Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389:838–841Google Scholar
  40. Johannes W (1989) Melting of plagioclase-quartz assemblages at 2 kbar water pressure. Contrib Mineral Petrol 103:270–276Google Scholar
  41. Kar A, Weaver B, Davidson J, Colucci M (1998) Origin of differentiated volcanic and plutonic rocks from Ascension Island, south Atlantic Ocean. J Petrol 39:1009–1024CrossRefGoogle Scholar
  42. Lightfoot PC, Hawkesworth CJ, Sethna SF (1987) Petrogenesis of rhyolites and trachytes from the Deccan trap: Sr, Nd and Pb isotope and trace element evidence. Contrib Mineral Petrol 95:44–54CrossRefGoogle Scholar
  43. Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493Google Scholar
  44. Macdonald R, Davies GR, Upton BGJ, Dunkley PN, Smith M, Leat PT (1995) Petrogenesis of Silali volcano, Gregory Rift, Kenya. J Geol Soc London 152:703–720Google Scholar
  45. Marsh BD (1981) On the crystallinity, probability of occurrence and rheology of lava and magma. Contrib Mineral Petrol 75:85–98CrossRefGoogle Scholar
  46. Marty B, Pik R, Yirgu G (1996) Helium isotopic variations in Ethiopian plume lavas: nature of magmatic sources and limit on lower mantle contribution. Earth Planet Sci Lett 144:223–237CrossRefGoogle Scholar
  47. McCulloch MT, Kyser TK, Woodhead JD, Kinsley L (1994) Pb-Sr-Nd-O isotopic constraints on the origin of rhyolites from the Taupo volcanic zone of New Zealand: evidence for assimilation followed by fractionation from basalt. Contrib Mineral Petrol 115:303–312CrossRefGoogle Scholar
  48. Menzies MA, Gallagher K, Hurford A, Yelland A (1997) Red Sea volcanic and the Gulf of Aden non-volcanic margins, Yemen: denudational histories and margin evolution. Geochim Cosmochim Acta 61:2511–2528CrossRefGoogle Scholar
  49. Merla G, Abbate E, Azzaroli A, Bruni P, Canuti P, Fazzuoli M, Sagri M, Tacconi P (1979) A geological map of Ethiopia and Somalia (1973) and comment with a map of major landforms. CNR, FirenzeGoogle Scholar
  50. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxene. Bull Mineral 111:535–550Google Scholar
  51. Nekvasil H, Dondolini A, Horn J, Filiberto J, Long H, Lindsley DH (2004) The origin and evolution of silica-saturated alkalic suites: an experimental study. J Petrol 45:693–721CrossRefGoogle Scholar
  52. Pailuc G (1932) Untersuchungen der Plagiokläse einiger tertiärer Ergussgesteine Siebenburgens (Rumänien) mittelst der Universaldrehtischmethode. Schweiz Mineral Petrol Mitteilungen 12:423–444Google Scholar
  53. Panjasawatwong Y, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of the effects of melt composition on plagioclase - melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contrib Mineral Petro, 118:420–432Google Scholar
  54. Peccerillo A, Barberio MR, Yirgu G, Ayalew D, Barberi M, Wu TW (2004) Relationships between mafic and acid peralkaline magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. J Petrol 44:2003–2032CrossRefGoogle Scholar
  55. Pik R, Deniel C, Coulon C, Yirgu G, Hofmann C, Ayalew D (1998) The northwestern Ethiopian Plateau flood basalts: classification and spatial distribution of magma types. J Volc Geotherm Res 81:91–111CrossRefGoogle Scholar
  56. Pik R, Deniel C, Coulon C, Yirgu G, Marty B (1999) Isotopic and trace element signatures of Ethiopian flood basalts: evidence for plume-lithosphere interactions. Geochim Cosmochim Acta 63:2263–2279CrossRefGoogle Scholar
  57. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes appying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum, New York, pp 31–75Google Scholar
  58. Rochette P, Tamrat E, Féraud G, Pik R, Courtillot V, Ketefo E, Coulon C, Hofmann C, Vandamme D, Yirgu G (1998) Magnetostratigraphy and timing of the Oligocene Ethiopian traps. Earth Planet Sci Lett 164:497–510CrossRefGoogle Scholar
  59. Russo A, Assefa G, Atnafu B (1994) Sedimentary evolution of the Abay river (blue Nile) basin, Ethiopia. N J Geol Paläontol Monatshefte 5:291–308Google Scholar
  60. Scaillet B, Macdonald R (2001) Phase relationships of peralkaline silicic magmas and petrogenetic implications. J Petrol 42:825–845CrossRefGoogle Scholar
  61. Scaillet B, Holtz F, Pichavant M (1997) Rheological properties of granitic magmas in their crystallisation range. In: Bouchez et al. (eds) Granite: From Segregation of Melt to Emplacement Fabrics, Kluwer, Dordrecht, pp 11–29Google Scholar
  62. Teklay M, Kröner A, Mezger K, Oberhänsli R (1998) Geochemistry, Pb–Pb single zircon ages and Nd–Sr isotope composition of Precambrian rocks from southern and eastern Ethiopia: implications for crustal evolution in East Africa. J Afr Earth Sci 26:207–227CrossRefGoogle Scholar
  63. Turner JS, Campbell IH (1986) Convection and mixing in magma chambers. Earth Sci Rev 23:255–352CrossRefGoogle Scholar
  64. Ukstins IA, Renne PR, Wolfeden E, Baker J, Ayalew D, Menzies M (2002) Matching conjugate volcanic rifted margins: 40Ar/39Ar chronostratigraphy of pre- and syn-rift bimodal flood volcanism in Ethiopia and Yemen. Earth Planet Sci Lett 198:289–306CrossRefGoogle Scholar
  65. Walter RC, Hart WK, Westgate JA (1987) Petrogenesis of a basalt-rhyolite tephra from the west-central Afar, Ethiopia. Contrib Mineral Petrol 95:462–480CrossRefGoogle Scholar
  66. Woldehaimanot B, Behrmann JH (1995) A study of metabasite and metagranite chemistry in the Adola region (south Ethiopia): implications for the evolution of the East African orogen. J Afr Earth Sci 21:459–476CrossRefGoogle Scholar
  67. Zellmer GF, Blake S, Vance D, Hawkesworth C, Turner S (1999) Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St. Vincent) determined by Sr diffusion systematics. Contrib Mineral Petrol 136:345–357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.CRPG-CNRSVandœuvre-lès-NancyFrance
  2. 2.Department of Geology and GeophysicsAddis Ababa UniversityAddis AbabaEthiopia

Personalised recommendations