Contributions to Mineralogy and Petrology

, Volume 148, Issue 6, pp 689–706 | Cite as

In-situ U–Pb geochronology and Hf isotope analyses of the Rayner Complex, east Antarctica

  • J. A. HalpinEmail author
  • C. L. Gerakiteys
  • G. L. Clarke
  • E. A. Belousova
  • W. L. Griffin
Original Paper


In-situ zircon U–Pb and Hf isotopic analysis via laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) of samples from Kemp and MacRobertson Lands, east Antarctica suggests that the Kemp Land terrane evolved separately from the rest of the Rayner Complex prior to the ca. 940 Ma Rayner Structural Episode. Several Archaean metamorphic events in rocks from western Kemp Land can be correlated with events previously reported for the adjacent Napier Complex. Recently reported ca. 1,600 Ma isotopic disturbance in rocks from the Oygarden Group may be correlated with a charnockitic intrusion in the Stillwell Hills before ca. 1,550 Ma. Despite being separated by some 200 km, T Hf DM ages indicate felsic orthogneiss from Rippon Point, the Oygarden Group, Havstein Island and the Stillwell Hills share a ca. 3,660–3,560 Ma source that is indistinguishable from that previously reported for parts of the Napier Complex. More recent additions to this crust include Proterozoic charnockite in the Stillwell Hills and the vicinity of Mawson Station. These plutons have distinct 176Hf/177Hf ratios and formed via the melting of crust generated at ca. 2,150–2,550 Ma and ca. 1,790–1,870 Ma respectively.


Zircon Xenocrystic Zircon Napier Complex Sample BH290 Rayner Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Careful reviews by S. Harley and an anonymous reviewer improved the paper. This work was completed with funding from the Antarctic Science Advisory Committee (GLC: ASAC Project No. 1150). Samples were collected during the 1996/1997, 1997/1998, 1999/2000 Australian National Antarctic Research Expeditions. The authors would like to thank the Australian Antarctic Division and the personal of Mawson Base for their logistic support. JAH and CLK were supported by Australian Postgraduate Awards at the University of Sydney. Norm Pearson provided considerable assistance and guidance in the analytical work and its interpretation. Nigel Kelly, Julie Hollis, Richard White, Vanessa Bennett and Joel Fitzherbert are thanked for their assistance in the collection of samples. This is contribution No. 372 from the ARC National Key Centre for Geochemical Evolution and Metallogeny of Continents (

Supplementary material

410_2004_627_MOESM1_ESM.pdf (58 kb)
Etable1 (PDF 59 kb)
410_2004_627_MOESM2_ESM.pdf (54 kb)
Etable2 (PDF 54 kb)
410_2004_627_MOESM3_ESM.pdf (55 kb)
Etable3 (PDF 55 kb)
410_2004_627_MOESM4_ESM.pdf (62 kb)
Etable4 (PDF 63 kb)
410_2004_627_MOESM5_ESM.pdf (61 kb)
Etable5 (PDF 62 kb)
410_2004_627_MOESM6_ESM.pdf (60 kb)
Etable6 (PDF 61 kb)
410_2004_627_MOESM7_ESM.pdf (89 kb)
Etable7 (PDF 90 kb)


  1. Anderson T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192:59–79CrossRefGoogle Scholar
  2. Arriens PA (1975) Precambrian geochronology of Antarctica (abstract). In: 1st Australian Geological Convention, Geological Society of Australia, Adelaide, pp 97–98Google Scholar
  3. Asami M, Suzuki S, Grew ES, Adachi M (1998) CHIME ages for granulites from the Napier Complex, east Antarctica. Polar Geoscience 11:172–199Google Scholar
  4. Belousova EA, Griffin WL, Shee SR, Jackson SE, O’Reilly SY (2001) Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, as determined by laser-ablation ICP-MS analysis. Australian J Sciences 48:757–765Google Scholar
  5. Bizzarro EA, Baker JA, H H, Ulfbeck D, Rosing M (2003) Early history of the Earth’s crust-mantle system inferred from hafnium isotopes in chondrites. Nature 421:931–933CrossRefGoogle Scholar
  6. Black LP, Gulson BL (1978) The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. Bureau of Mineral Resources, Journal of Australian Geology and Geophysics 3:227–232Google Scholar
  7. Black LP, Williams IS, Compston W (1986) Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica. Contributions to Mineralogy and Petrology 94:427–437CrossRefGoogle Scholar
  8. Black LP, Harley SL, Sun SS, McCulloch MT (1987) The Rayner Complex of East Antarctica: complex isotopic systematics within a Proterozoic mobile belt. Journal of Metamorphic Geology 5:1–26CrossRefGoogle Scholar
  9. Blichert-Toft J, Chauvel C, Albaréde F (1997) The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148:243–258. ErratumCrossRefGoogle Scholar
  10. Boger SD, Carson CJ, Wilson CJL, Fanning CM (2000) Neoproterozoic deformation in the Radok Lake region of the northern Prince Charles Mountains, east Antarctica; evidence for a single protracted orogenic event. Precambrian Research 104(1–2):1–24CrossRefGoogle Scholar
  11. Carson CJ, Boger SD, Fanning CM, Wilson CJL, Thost DE (2000) SHRIMP U–Pb geochronology from Mount Kirkby, northern Prince Charles Mountains, East Antarctica. Antarctic Science 12(4):429–442CrossRefGoogle Scholar
  12. Carson CJ, Ague JJ, Coath CD (2002) U–Pb geochronology from Tonagh Island, East Antarctica: implications for the timing of ultra-high temperature metamorphism of the Napier Complex. Precambrian Research 116:237–263CrossRefGoogle Scholar
  13. Clarke GL (1987) A comparative study of the structural and metamorphic evolution of the Olary (South Australian) and Stillwell Hills (Antarctica) Precambrian terrains. Ph.D. thesis, The University of Melbourne, Melbourne, 254 ppGoogle Scholar
  14. Clarke GL (1988) Structural constraints on the Proterozoic reworking of Archaean crust in the Rayner Complex, MacRobertson and Kemp Land coast, East Antarctica. Precambrian Research 40–41:137–156CrossRefGoogle Scholar
  15. De Biévre P, Taylor PDP (1993) Table of the isotopic composition of the elements. International Journal of Mass Spectrometer and Ion Processes 123(2):149–166CrossRefGoogle Scholar
  16. Duchene S, Blichert-Toft J, Luais B, Telouk P, Lardeaux JM, Albaréde F (1997) The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature 387:586–589CrossRefGoogle Scholar
  17. Dunkley DJ (1998) The Rayner Complex in MacRobertson Land, east Antarctica. Ph.D. thesis, The University of Sydney, Sydney, 284 ppGoogle Scholar
  18. Dunkley DJ, Clarke GL, White RW (2002) Structural and metamorphic evolution of the mid-late Proterozoic Rayner Complex, East Antarctica. In: Gamble JA, Skinner DNB, Henrys S (eds) Antarctica at the Close of a Millenium. Proceedings Volume 8th International Symposium on Antarctic Earth Sciences, Royal Society of New Zealand Bulletin. The Royal Society of New Zealand, pp 31–42Google Scholar
  19. Dunkley DJ, Clarke GL, White RW (2003) The ~1020–900 Ma Rayner Structural Episode in MacRobertson Land, east Antarctica: a case of oblique continental collision? Proceedings of the 8th International Symposium on Antarctic Earth Sciences, Wellington, New Zealand, 1999, The Royal Society of New Zealand Bulletin 35:31–42Google Scholar
  20. Fitzsimons ICW (2000) A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents. J Afr Earth Sci 31(1):3–23CrossRefGoogle Scholar
  21. Grew ES (1998) Boron and beryllium minerals in granulite-facies pegmatites and implications of beryllium pegmatites for the origin and evolution of the Archaean Napier Complex of East Antarctica. Memoirs of the National Institute of Polar Research, Special Issue 53:74–92Google Scholar
  22. Grew ES, Manton WI (1979) Archaean rocks in Antarctica: 2.5 billion-year uranium-lead ages of pegmatites in Enderby Land. Science 206:443–445CrossRefGoogle Scholar
  23. Grew ES, Manton WI, James PR (1988) U–Pb data on granulite facies rocks from Fold Island, Kemp Coast, east Antarctica. Precambrian Research 42:63–75CrossRefGoogle Scholar
  24. Griffin WL, Pearson NJ, Belousova EA, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64(1):133–147CrossRefGoogle Scholar
  25. Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269CrossRefGoogle Scholar
  26. Harley SL, Black LP (1997) A revised Archaean chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies. Antarc Sci 9(1):74–91CrossRefGoogle Scholar
  27. Harley SL, Kinny PD, Snape I, Black LP (2001) Zircon chemistry and the definition of events in Archaean granulite terrains. In: Cassidy KF, Dunphy JM, van Krankendonk MJ (eds) 4th International Archaean Symposium, Extended Abstract Volume, AGSO Geoscience Australia record 2001/37, Canberra, pp 511–513Google Scholar
  28. Hirata T, Nesbitt RW (1995) U–Pb isotope geochronology of zircon: Evaluation of the laser probe-inductively coupled plasma-mass spectrometry technique. Geochim Cosmochim Acta 59:2491–2500CrossRefGoogle Scholar
  29. Hokada T, Misawa K, Shiraishi K, Suzuki S (2003) Mid to late Archaean (3.3–2.5 Ga) tonalitic crustal formation and high-grade metamorphism at Mt. Riiser-Larsen, Napier Complex, East Antarctica. Precamb Res 127:215–228CrossRefGoogle Scholar
  30. Hokada T, Misawa K, Yokoyama K, Shiraishi K, Yamaguchi A (2004) SHRIMP and electron microprobe chronology of UHT metamorphism in the Napier Complex, East Antarctica: implications for zircon growth at >1,000°C. Contrib Mineral Petrol 147:1–20CrossRefGoogle Scholar
  31. Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorphic Geol 18:423–439CrossRefGoogle Scholar
  32. Jackson SE, Dunning GR, Horn I, Ingo, Longerich HP (1997) The application of laser ablation microprobe (LAM)-ICP-MS to in situ U–Pb zircon geochronology: Keynote address. In: GAC/MAC joint annual meeting, May 1997, Ottawa, Ontario, p A73Google Scholar
  33. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) to in situ U–Pb zircon geochemistry. Chem Geol (in press)Google Scholar
  34. Kamenev EN (1972) Geological structure of Enderby Land. In: Antarctic geology and geophysics. International Union of Geological Sciences (IUGS), Oslo, International, pp 579–583Google Scholar
  35. Kelly NM (2000) Deformation and metamorphism in the lower continental crust: Oygarden Group of Islands, east Antarctica. PhD Thesis, The University of Sydney, p 316Google Scholar
  36. Kelly NM, Harley SL (2004) An intergrated textural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contrib Mineral Petrol (in press) Google Scholar
  37. Kelly NM, Clarke GL, Carson CJ, White RW (2000) Thrusting in the lower crust: evidence from the Oygarden Islands, Kemp Land, East Antarctica. Geol Mag 137(3):219–234CrossRefGoogle Scholar
  38. Kelly NM, Clarke GL, Fanning CM (2002) A two-stage evolution of the Neoproterozoic Rayner Structural Episode; new U–Pb sensitive high resolution ion microprobe constraints from the Oygarden Group, Kemp Land, East Antarctica. Precamb Res 116(3–4):307–330CrossRefGoogle Scholar
  39. Kinny PD, Compston W, Williams IS (1991) A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochim Cosmochim Acta 55:849–859CrossRefGoogle Scholar
  40. Kinny PD, Black LP, Sheraton JW (1997) Zircon U–Pb ages and geochemistry of igneous and metamorphic rocks from the northern Prince Charles Mountains, Antarctica. AGSO J Aust Geol Geophys 16:637–654Google Scholar
  41. Knudsen T-L, Griffin WL, Hartz EH, Andresen A, Jackson SE (2001) In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: a record of repeated crustal reworking. Contrib Mineral Petrol 141:83–94CrossRefGoogle Scholar
  42. Ludwig KR (2001) User manual for Isoplot/Ex, version 2.49, a geochronological toolkit for Microsoft Excel. Berkley Geochronological Centre Special Publication 1aGoogle Scholar
  43. Manton WI, Grew ES, Hoffman PF, Sheraton JW (1992) Granitic rocks of the Jetty Peninsula, Amery Ice Shelf area, East Antarctica. In: Yoshida Y, Kaminuma K, Shiraishi K (eds) Recent progress in Antarctic Earth Science. Terra Scientific Publishing Company, Tokyo, pp 179–189Google Scholar
  44. Mezger K, Krogstad EJ (1997) Interpretation of discordant U–Pb zircon ages: an evaluation. J Metamorphic Geol 15:127–140CrossRefGoogle Scholar
  45. Mikhalsky EV, Sheraton JW, Laiba AA, Beliatsky BV (1996) Geochemistry and origin of Mesoproterozoic metavolcanic rocks from Fisser Massif, Prince Charles Mountains, east Antarctica. Antarc Sci 8:85–104CrossRefGoogle Scholar
  46. Mikhalsky EV, Sheraton JW, Laiba AA, Tingey RJ, Thost DE, Kamenev EN, Fedorov LV (2001) Geology of the Prince Charles Mountains, Antarctica. AGSO - Geoscience Australia Bulletin 247, Canberra, AustraliaGoogle Scholar
  47. Norman MD, Pearson NJ, Sharma A, Griffin WL (1996) Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostands Newslett 20:247–261CrossRefGoogle Scholar
  48. Pidgeon RT, Nemchin AA, Hitchen GJ (1998) Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U–Pb ages. Contrib Mineral Petrol 132:288–299CrossRefGoogle Scholar
  49. Rickers K, Mezger K, Raith MM (2001) Evolution of the Continental Crust in the Proterozoic Eastern Ghats Belt, India and new constraints for Rodinia reconstruction: implications from Sm–Nd, Rb–Sr and Pb–Pb isotopes. Precamb Res 112:183–210CrossRefGoogle Scholar
  50. Rubatto D, Gebauer D (2000) Use of cathodoluminescence for U–Pb zircon dating by ion microprobe: some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences Springer, Berlin Heidelberg New York, pp 373–400Google Scholar
  51. Rubatto D, Gebauer D, Fanning M (1998) Jurassic formation and Eocene subduction of the Zermatt-Saas- Fee ophiolites: implications for the geodynamic evolution of the Central and Western Alps. Contrib Mineral Petrol 132(3):269–287CrossRefGoogle Scholar
  52. Sandiford M, Wilson CJL (1984) The structural evolution of the Fyfe Hills-Khmara Bay Region, Enderby Land, East Antarctica. Aust J Earth Sci 31(4):403–426CrossRefGoogle Scholar
  53. Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201CrossRefGoogle Scholar
  54. Scherer E, Munker C, Mezger K (2001) Calibration of the lutetium–hafnium clock. Science 293:683–687CrossRefGoogle Scholar
  55. Sheraton JW, Black LP (1981) Geochemistry and geochronology of proterozoic Tholeiite Dykes of East Antarctica: evidence for Mantle Metasomatism. Contrib Mineral Petrol 78:305–317CrossRefGoogle Scholar
  56. Sheraton JW, Black LP (1983) Geochemistry of Precambrian gneisses: relevance for the evolution of the East Antarctic Shield. Lithos 16:273–296CrossRefGoogle Scholar
  57. Sheraton JW, Offe LA, Tingey RJ, Ellis DJ (1980) Enderby Land, Antarctica—an unusual Precambrian high-grade metamorphic terrain. J Geol Soc Aust 27:1–18CrossRefGoogle Scholar
  58. Sheraton JW, Tingey RJ, Black LP, Offe LA, Ellis DJ (1987) Geology of an unusual Precambrian high-grade metamorphic terrane—Enderby Land and western Kemp Land, Antarctica. Australian Bureau of Mineral Resources Bulletin vol 223, p 51Google Scholar
  59. Spetsius ZV, Belousova EA, Griffin WL, O’Reilly SY, Pearson NJ (2002) Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds. Earth Planet Sci Lett 199:111–126CrossRefGoogle Scholar
  60. Tingey RJ (1982) The geologic evolution of the Prince Charles Mountains—an Antarctic Achaean cratonic block. University of Wisconsin Press, Madison, pp 455–464Google Scholar
  61. Trail DS (1970) ANARE 1961 Geological Traverses on the Mac.Robertson Land and Kemp Land Coast. Bureau of Mineral Resources Geology and Geopyhsics Report vol 135, pp 1–32Google Scholar
  62. Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122(4):337–358CrossRefGoogle Scholar
  63. Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134(4):380–404CrossRefGoogle Scholar
  64. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostands Newslett 19:1–23CrossRefGoogle Scholar
  65. Young DN, Black LP (1991) U–Pb zircon dating of Proterozoic igneous charnockites from the Mawson Coast, East Antarctica. Antarc Sci 3(2):205–216CrossRefGoogle Scholar
  66. Young DN, Ellis DJ (1991) The intrusive Mawson charnockites: evidence for a compressional plate margin setting of the Proterozoic mobile belt of East Antarctica. In: Thomson MRA, Crame JA, Thomson JW (eds) Geological evolution of Antarctica Cambridge University Press, Cambridge, pp 25–31Google Scholar
  67. Young DN, Zhao J, Ellis DJ, McCulloch MT (1997) Geochemical and Sr-Nd isotopic mapping of source provinces for the Mawson charnockites, east Antarctica: implications for Proterozoic tectonics and Gondwana reconstruction. Precamb Res 86:1–19CrossRefGoogle Scholar
  68. Zhao J, Ellis DJ, Kilpatrick JA, McCulloch MT (1997) Geochemical and Sr-Nd isotopic study of charnockites and related rocks in the northern Prince Charles Mountains, East Antarctica: implication for charnockite petrogenesis and Proterozoic crustal evolution. Precamb Res 81:37–66CrossRefGoogle Scholar
  69. Zheng J, Griffin WL, O’Reilly SY, Lu F, Wang C, Zhang M, Wang F, Li H (2004) 3.6 Ga lower crust in central China: new evidence on the assembly of the North China craton. Geology 32(3):229–232CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J. A. Halpin
    • 1
    Email author
  • C. L. Gerakiteys
    • 1
  • G. L. Clarke
    • 1
  • E. A. Belousova
    • 2
  • W. L. Griffin
    • 2
    • 3
  1. 1.School of GeosciencesUniversity of SydneySydneyAustralia
  2. 2.GEMOC ARC National Key Centre, Department of Earth and Planetary SciencesMacquarie UniversityAustralia
  3. 3.CSIRO Exploration and MiningAustralia

Personalised recommendations