Contributions to Mineralogy and Petrology

, Volume 148, Issue 5, pp 582–601 | Cite as

Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study

  • Rainer Thomas
  • Hans-Jürgen Förster
  • Karen Rickers
  • James D. Webster
Original Paper


Quartz crystals from topaz–zinnwaldite–albite granites from Zinnwald (Erzgebirge, Germany) contain, in addition to primary and secondary fluid inclusions (FIs), abundant crystalline silicate-melt inclusions (MIs) with diameters up to 200 μm. These MIs represent various stages of evolution of a highly evolved melt system that finally gave rise to granite-related Sn–W mineralization. The combination of special experimental techniques with confocal laser Raman-microprobe spectroscopy and EMPA permits precise measurement of elevated contents of H2O, F, and B in re-homogenized MIs. The contents of H2O and F were observed to increase from 3 to 30 and 1.9 to 6.4 wt%, respectively, during magma differentiation. However, there is a second MI group, very rich in H2O, with values up to 55 wt% H2O and an F concentration of approximately 3 wt%. Ongoing enrichment of volatiles H2O, F, B, and Cl and of Cs and Rb can be explained in terms of magma differentiation triggered by fractional crystallization and thus, is suggested to reflect elemental abundances in natural magmas, and not boundary-layer melts. Partitioning between melt and cogenetic fluids has further modified the magmatic concentrations of some elements, particularly Sn. The coexistence of two types of MIs with primary FIs indicates fluid saturation early in the history of magma crystallization, connected with a continuous sequestration of Sn, F, and B. The results of this study provide additional evidence for the extraordinary importance of the interplay of H2O, F, and B in the enrichment of Sn during magma differentiation by decreasing the viscosity of and increasing the diffusivity in the melts as well as by the formation of various stable fluoride complexes in the melt and coexisting fluid.


  1. Anderson AT (2003) An introduction to melt (glass + crystals) inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions—analysis and interpretation, short course series (Raeside R series ed), chap 14, vol 32. Vancouver, British Columbia, pp 353–364Google Scholar
  2. Audétat A, Keppler H (2004) Viscosity of fluids in subduction zones. Science 303:513–516CrossRefPubMedGoogle Scholar
  3. Audétat A, Pettke T (2003) The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Cañada Pinabete plutons in northern New Mexico (USA). Geochim Cosmochim Acta 67:97–121CrossRefGoogle Scholar
  4. Baker DR, Vaillancourt J (1995) The viscosity of F+H2O-bearing granitic melts and implications for melt extraction and transport. Earth Planet Sci Lett 132:199–211CrossRefGoogle Scholar
  5. Bassett WA, Shen AH, Bucknum M, Chou I-M (1993) A new diamond anvil cell for hydrothermal studies to 2.5 GPa and from −190 to 1200°C. Rev Sci Instrum 64:2340–2345CrossRefGoogle Scholar
  6. Baumann L, Kuschka E, Seifert T (2000) Lagerstätten des Erzgebirges. Enke in Georg Thieme Verlag Stuttgart, p 300Google Scholar
  7. Bilderback DH, Huang R (2001) X-ray tests of microfocusing mono-capillary optic for protein crystallography, nuclear instruments and methods in physics research, Section A: accelerators, spectrometers, detectors and associated equipment, vol 467–468, part 2, pp 970–973Google Scholar
  8. Bodnar RJ, Sterner SM, Hall DL (1989) Salty: a Fortran program to calculate compositions of fluid inclusions in the system NaCl–KCl–H2O. Comput Geosci 15:19–41CrossRefGoogle Scholar
  9. Chabiron A, Pironon J, Massare D (2003) Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy. Contrib Miner Petrol 146:485–492CrossRefGoogle Scholar
  10. Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24CrossRefGoogle Scholar
  11. Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Miner 80:319–328Google Scholar
  12. Dingwell DB (1987) Melt viscosities in the system NaAlSi3O8–H2O–F2O−1. In: Mysen BO (ed) Magmatic processes: physicochemical principles. The Geochemical Society, Special Publication No. 1, pp 423–431Google Scholar
  13. Dolejš D, Baker DR (2004) Thermodynamic analysis of the system Na2O–K2O–CaO–Al2O3–SiO2–H2O–F2O−1: stability of fluorine-bearing minerals in felsic igneous suites. Contrib Miner Petrol 146:762–778CrossRefGoogle Scholar
  14. Falkenberg G, Rickers K, Bilderback DH, Huang R (2003) A single-bounce capillary for focusing of hard X-rays. HASYLAB Annual report 2003, pp 71–74Google Scholar
  15. Fuhrman ML, Lindsley DL (1988) Ternary-feldspar modeling and thermometry. Am Miner 73:201–215Google Scholar
  16. Gmelin L (1926) Gmelins Handbuch der anorganischen Chemie, System-Nr. 13 Bor, 8. Auflage, Verlag Chemie GmbH., Leipzig-Berlin, p 142Google Scholar
  17. Gmelin L (1954) Gmelins Handbuch der anorganischen Chemie, System-Nr. 13 Bor, Ergänzungsband, Verlag Chemie GmbH., Weinheim/Bergstrasse, p 253Google Scholar
  18. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. Society for Sedimentary Geology Short Course 31, p 199Google Scholar
  19. Jackson KJ, Helgeson HC (1985) Chemical and thermodynamic constraints on the hydrothermal transport and deposition of Sn: I. Calculation of the solubility of cassiterite at high pressure and temperature. Geochim Cosmochim Acta 49:1–22CrossRefGoogle Scholar
  20. Jenkins TE, Lewis J (1981) A Raman investigation of some metal (II) hexafluorosilicate (IV) and hexafluorotitanate (IV) salts. Spectrochim Acta 37A:47–50CrossRefGoogle Scholar
  21. Kamenetsky VS, van Achterbergh E, Ryan CG, Naumov VB, Mernagh TP, Davidson P (2002) Extreme chemical heterogeneity of granite-derived hydrothermal fluids: an example from inclusions in a single crystal of miarolitic quartz. Geology 30:459–462CrossRefGoogle Scholar
  22. Kamenetsky VS, Naumov VB, Davidson P, van Achterbergh E, Ryan CG (2004) Immiscibility between silicate magmas and aqueous fluids: a melt inclusion pursuit into the magmatic-hydrothermal transition in the Omsukchan Granite (NE Russia). Chem Geol 210:73–90Google Scholar
  23. Keppler H (2004) The properties of subduction zone fluids. EMPG-X Symposium Abstracts/Lithos 73:S56Google Scholar
  24. Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite–H2O–HCl and haplogranite–H2O–HF. Contrib Miner Petrol 109:139–150CrossRefGoogle Scholar
  25. London D (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Can Miner 51:403–420Google Scholar
  26. London D (1999) Melt boundary layers and the growth of pegmatite textures. Can Miner (abstr) 37:826–827Google Scholar
  27. Lowenstern JB (1994) Dissolved volatile concentrations in an ore-forming magma. Geology 22:893–896CrossRefGoogle Scholar
  28. Lowenstern JB (2003) Melt inclusions come of age: volatiles, volcanoes, and Sorby’s legacy. In: De Vivo B, Bodnar RJ (eds) Melt inclusions in volcanic systems – methods, applications and problems. Elsevier, Amsterdam, pp 1–21Google Scholar
  29. Lu F, Anderson Jr AT, Davis AM (1995) Diffusional gradients at the crystal/melt interface and their effect on the composition of melt inclusions. J Geol 103:591–597Google Scholar
  30. Massare D, Métrich N, Clocchiatti R (2002) High-temperature experiments on silicate melt inclusions in olivine at 1 atm: inference on temperatures of homogenization and H2O concentrations. Chem Geol 183:87–98CrossRefGoogle Scholar
  31. Maya L (1977) Fluoroboric acid and its hydroxy derivatives – solubility and spectroscopy. J Inorg Nucl Chem 39:225–231CrossRefGoogle Scholar
  32. McGee JJ, Slack JF, Herrington JR (1991) Boron analysis by electron microprobe using MoB4C layered synthetic crystals. Am Miner 76:681–684Google Scholar
  33. McKenzie D (1985) The extraction of magma from the crust and mantle. Earth Planet Sci Lett 74:81–91CrossRefGoogle Scholar
  34. Morgan VI GB, London D (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Miner 81:1176–1185Google Scholar
  35. Mysen BO, Cody GD, Smith A (2004) Solubility mechanism of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures. Geochim Cosmochim Acta 68:2745–2769CrossRefGoogle Scholar
  36. Naumov VB (1979) Determination of concentration and pressure of volatiles in magmas from inclusions in minerals. Geochem Int 16:33–40Google Scholar
  37. Nývlt J (1977) Solid–liquid phase equilibria. Elsevier, Amsterdam, p 248Google Scholar
  38. Pletchov PY, Trusov SV (2000) The influence of boundary layer effects on the melt inclusions compositions. Exp Geosci 9:39–41Google Scholar
  39. Rickers K, Thomas R, Heinrich W (2004) Trace-element analysis of individual synthetic and natural fluid inclusions with synchrotron radiation XRF using Monte Carlo simulations for quantification. Eur J Miner 16:23–35CrossRefGoogle Scholar
  40. Roedder E (1984) Fluid inclusions. In: Reviews in mineralogy, vol 12, p 644Google Scholar
  41. Roedder E (2003) Significance of melt inclusions. In: De Vivo B, Bodnar RJ (eds) Melt inclusions in volcanic systems – methods, applications and problems. Elsevier, pp 15–16Google Scholar
  42. Saavedra J, Sanchez AG, Perez SR (1974) Decomposition and analysis by atomic absorption photo-spectrometry of silicate rocks. Chem Geol 13:135–139CrossRefGoogle Scholar
  43. Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272:870–893Google Scholar
  44. Sirbescu M-LC, Nabelek PI (2003a) Crustal melts below 400°C. Geology 31:685–688CrossRefGoogle Scholar
  45. Sirbescu M-LC, Nabelek PI (2003b) Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota – evidence from fluid inclusions. Geochim Cosmochim Acta 67:2443–2465CrossRefGoogle Scholar
  46. Smith VG, Tiller WA, Rutter JW (1955) A mathematical analysis of solute redistribution during solidification. Can J Phys 33:723–745Google Scholar
  47. Stemprok M, Holub FV, Novák JK (2003) Multiple magmatic pulses of the Eastern Volcano-Plutonic Complex, Krušné hory/Erzgebirge batholith, and their phosphorus contents. Bull Geosci 78:277–296Google Scholar
  48. Student JJ (2002) Silicate melt inclusions in igneous petrogenesis. PhD Dissertation, Virginia Tech.
  49. Student JJ, Bodnar RJ (1999) Synthetic fluid inclusions XIV: microthermometric and compositional analysis of coexisting silicate melt and aqueous fluid inclusions trapped in haplogranite–H2O–NaCl–KCl system at 800°C and 2000 bars. J Petrol 40:1509–1525CrossRefGoogle Scholar
  50. Tabaksblat R, Meier RJ, Kip BJ (1992) Confocal Raman microspectroscopy: theory and application to thin polymer samples. Appl Spectrosc 46:60–68Google Scholar
  51. Thomas R (1982) Ergebnisse der thermobarogeochemischen Untersuchungen an Flüssigkeitseinschlüssen in Mineralen der postmagmatischen Zinn-Wolfram-Mineralisation des Erzgebirges. FFH C 370, p 85 + 15Google Scholar
  52. Thomas R (1989) Untersuchungen von Schmelzeinschlüssen und ihre Anwendung zur Lösung lagerstättengeologischer und petrologischer Problemstellungen. Dissertation B, Bergakademie Freiberg, p 131Google Scholar
  53. Thomas R (1994a) Estimation of the viscosity and the water content of silicate melts from melt inclusion data. Eur J Miner 6:511–535Google Scholar
  54. Thomas R (1994b) Fluid evolution in relation to the emplacement of the Variscan granites in the Erzgebirge region: a review of the melt and fluid inclusion evidence. In: Seltmann, Kämpf, Möller (eds) Metallogeny of collisional orogens. Czech Geological Survey, Prague, pp 70–81Google Scholar
  55. Thomas R (2000) Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy. Am Miner 85:868–872Google Scholar
  56. Thomas R (2002a) Determination of the H3BO3 concentration in fluid and melt inclusions in granite pegmatites by laser Raman microprobe spectroscopy. Am Miner 87:56–68Google Scholar
  57. Thomas R (2002b) Determination of water contents in melt inclusions by laser Raman spectroscopy. In: De Vivo B, Bodnar RJ (eds) Proceedings of the workshop – short course on volcanic systems, geochemical and geophysical monitoring. Melt inclusions: methods, applications and problems, 26–30 September, Seiano di Vico Equense (near Napoli), Italy, pp 211–216Google Scholar
  58. Thomas R, Klemm W (1997) Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: volatile content and entrapment conditions. J Petrol 38:1753–1765CrossRefGoogle Scholar
  59. Thomas R, Webster JD (2000) Strong Sn enrichment in a pegmatite-forming melt. Miner Deposita 35:570–582CrossRefGoogle Scholar
  60. Thomas R, Webster JD, Heinrich W (2000) Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contrib Miner Petrol 139:394–401CrossRefGoogle Scholar
  61. Thomas R, Förster H-J, Heinrich W (2003) The behaviour of boron in a peraluminous granite–pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study. Contrib Miner Petrol 144:457–472Google Scholar
  62. Tischendorf G (1988) On the genesis of tin deposits related to granites: the example Erzgebirge. Z Geol Wissen 16:407–420Google Scholar
  63. Veksler I IV, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Miner Petrol 143:673–683Google Scholar
  64. Veksler I IV, Thomas R, Schmidt CH (2002) Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite. Am Miner 87:775–779Google Scholar
  65. Wallace PJ, Anderson AT Jr, Davis AM (1999) Gradients in H2O, CO2, and exsolved gas in a large-volume silicic magma system: interpreting the record preserved in melt inclusions from the Bishop Tuff. J Geophys Res 104(B9):20097–20122CrossRefGoogle Scholar
  66. Webster JD, Duffield WA (1994) Extreme halogen abundances in tin-rich magma of the Taylor Creek rhyolite, New Mexico. Econ Geol 89:840–850Google Scholar
  67. Webster JD, Rebbert CR (2001) The geochemical signature of fluid-saturated magma determined from silicate melt inclusions in Ascension Island granite xenoliths. Geochim Cosmochim Acta 65:123–136CrossRefGoogle Scholar
  68. Webster JD, Thomas R, Rhede D, Förster H-J, Seltmann R (1997) Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochim Cosmochim Acta 61:2589–2604CrossRefGoogle Scholar
  69. Webster JD, Raia F, Tappen C, DeVivo B (2003) Pre-eruptive geochemistry of the ignimbrite-forming magmas of the Campanian Volcanic Zone, Southern Italy, determined from silicate melt inclusions. Miner Petrol 79:99–125CrossRefGoogle Scholar
  70. Webster J, Thomas R, Förster H-J, Seltmann R, Tappen C (2004) Geochemical evolution of halogen-enriched, granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Miner Deposita 39:452–472Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Rainer Thomas
    • 1
  • Hans-Jürgen Förster
    • 2
  • Karen Rickers
    • 1
    • 3
  • James D. Webster
    • 4
  1. 1.GeoForschungsZentrum PotsdamTelegrafenbergPotsdamGermany
  2. 2.Institute of Earth SciencesUniversity of PotsdamPotsdamGermany
  3. 3.Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron DESYHamburgGermany
  4. 4.Department of Earth and Planetary SciencesA.M.N.H.New YorkUSA

Personalised recommendations