Contributions to Mineralogy and Petrology

, Volume 148, Issue 2, pp 201–215 | Cite as

Liquidus surfaces of ultracalcic primitive melts: formation conditions and sources

  • Etienne MédardEmail author
  • Max W. Schmidt
  • Pierre Schiano
Original Paper


CaO-rich, Al2O3-poor ultracalcic primitive melts occur at mid-ocean-ridges, back-arc basins, ocean islands and volcanic arcs. They are subdivided into a “nepheline-normative” alkaline-rich, silica-poor group uniquely found in arcs and in “hypersthene-normative” fairly refractory melts which occur in all of the above environments. The high CaO contents (to 19.0 wt%) and CaO/Al2O3 ratios (to 1.8) exclude an origin from fertile lherzolites at volatile-absent conditions. Experimental investigation of the liquidus of a hypersthene-normative and a nepheline-normative ultracalcic melt results in quite distinct pressure-temperature conditions of multiple saturation: whereas the hypersthene-normative liquid saturates in olivine + clinopyroxene at 1.2 GPa and 1,410°C, this occurs at 0.2 GPa and 1,220°C for the nepheline-normative ultracalcic liquid. Our results in combination with melting experiments from the literature suggest that hypersthene-normative melts result from melting of a refractory olivine + clinopyroxene ± orthopyroxene source at elevated mantle temperatures. Contrasting, nepheline-normative ultracalcic melts form from wehrlitic cumulates in the arc crust; to account for the high alkaline and low silica contents, and the relatively low temperatures, source wehrlites must have contained amphibole.


Olivine CaNe Nepheline Oxygen Fugacity Multiple Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has benefited from discussions with D. Laporte, E.M. Stolper and P. Boivin. We thank A. Provost for his mass-balance program and M. Veschambre for technical assistance with the electron probe microanalysis. The manuscript has been improved by constructive reviews by D.H. Green and M.M. Hirschmann. Financial support was provided by the European Community’s Human Potential Programme under contract HPRN-CT-2002–00211 (Euromelt) and by INSU-CNRS (I.T. programme).


  1. Albarède F, Provost A (1977) Petrologic and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis. Comput Geosci 3:309–326CrossRefGoogle Scholar
  2. Ancey M, Bastenaire F, Tixier R (1978) Application des méthodes statistiques en microanalyse. In: Maurice F, Meny L, Tixier R (eds) Microanalyse, microscopie électronique à balayage. Les Editions du Physicien, Orsay, pp 323–347Google Scholar
  3. Aoki KI (1971) Petrology of mafic inclusions from Itinome-gata, Japan. Contrib Miner Petrol 30:314–331Google Scholar
  4. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827CrossRefGoogle Scholar
  5. Barsdell M, Berry RF (1990) Origin and evolution of primitive island arc ankaramites from Western Epi, Vanuatu. J Petrol 31:747–777Google Scholar
  6. Basaltic Volcanism Study Project (1981) Basaltic Volcanism on the Terrestrial Planets. Pergamon Press, Inc., New York, p 1286Google Scholar
  7. Bell PM, Davis BTC (1969) Melting relations in the system jadeite-diopside at 30 and 40 kilobars. Am J Sci 267-A:17–32Google Scholar
  8. Brey G, Green DH (1977) Systematic study of liquidus phase relations in olivine melilitite + H2O + CO2 at high pressures and petrogenesis of an olivine melilitite magma. Contrib Miner Petrol 61:141–162Google Scholar
  9. Brey G, Huth J (1984) The enstatite-diopside solvus to 60 kbar. In: Kornprobst J (ed) Kimberlites II: the mantle and crust-mantle relationships. Elsevier, Amsterdam pp 257–264Google Scholar
  10. De Hoog JCM, Mason PRD, van Bergen MJ (2001) Sulfur and chalcophile elements in subduction zones: constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochim Cosmochim Acta 65:3147–3164CrossRefGoogle Scholar
  11. Debari S, Kay SM, Kay RW (1987) Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from the MOHO of an island arc. J Geol 95:329–341Google Scholar
  12. Della-Pasqua FN, Varne R (1997) Primitive ankaramitic magmas in volcanic arcs: a melt-inclusion approach. Can Miner 35:291–312Google Scholar
  13. Della-Pasqua FN, Kamenetsky VS, Gasparon M, Crawford AJ, Varne R (1995) Al-spinels in primitive arc volcanics. Miner Petrol 53:1–26Google Scholar
  14. Dunworth EA, Wilson M (1998) Olivine melilitites of the SW German tertiary volcanic province: mineralogy and petrogenesis. J Petrol 39:1805–1836CrossRefGoogle Scholar
  15. Falloon TJ, Green DH (1988) Anhydrous partial melting of peridotite from 8 to 35 kb and the petrogenesis of MORB. J Petrol Spec Lithosphere Issue, pp 379–414Google Scholar
  16. Falloon TJ, Green DH, Jacques AL, Hawkins JW (1999) Refractory magmas in back-arc basin settings—experimental constraints on the petrogenesis of a Lau Basin example. J Petrol 40:255–277CrossRefGoogle Scholar
  17. Gaetani GA, Cherniak DJ, Watson EB (2002) Diffusive reequilibration of CaO in olivine-hosted melt inclusions. In: Goldschmidt Conference Abstracts, p A254Google Scholar
  18. Gerlach TM, Graeber EJ (1985) Volatile budget of Kilauea volcano. Nature 313:273–277Google Scholar
  19. Green DH, Falloon TJ, Eggins SM, Yaxley GM (2001) Primary magmas and mantle temperatures. Eur J Miner 13:437–451CrossRefGoogle Scholar
  20. Green DH, Schmidt MW, Hibberson, WO (2004) Island-arc ankaramites: primitive melts from fluxed refractory lherzolitic mantle. J Petrol 45:391–403CrossRefGoogle Scholar
  21. Gust DA, Perfit MR (1987) Phase relations of a high-Mg basalt from the Aleutian Island Arc: implications for primary island arc basalts and high-Al basalts. Contrib Miner Petrol 97:7–18Google Scholar
  22. Himmelberg GR, Loney RA (1995) Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska. USGS Prof Paper 1564Google Scholar
  23. Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in the alkali-basalt magma generation. Geophys Res Lett 24:2837–2840CrossRefGoogle Scholar
  24. Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473CrossRefGoogle Scholar
  25. Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotites using aggregates of diamonds. Earth Planet Sci Lett 114:477–489Google Scholar
  26. Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Miner Petrol 124:185–208CrossRefGoogle Scholar
  27. Hirschmann MM, Baker MB, Stolper EM (1998) The effect of alkalis on the silica content of mantle-derived melts. Geochim Cosmochim Acta 62:883–902CrossRefGoogle Scholar
  28. Hirschmann MM, Ghiorso MS, Stolper EM (1999) Calculation of peridotite partial melting from thermodynamic models of minerals and melts. II. Isobaric variations in melts near the solidus and owing to variable source composition. J Petrol 40:297–313CrossRefGoogle Scholar
  29. Holloway JR (1972) The system pargasite-H2O–CO2: a model for melting of a hydrous mineral with a mixed-volatile fluid—I. Experimental results to 8 kbar. Geochim Cosmochim Acta 37:351–666Google Scholar
  30. Holloway JR, Pan V, Gudmundsson G (1992) High-pressure fluid-absent melting experiments in the presence of graphite: oxygen fugacity, ferric/ferrous ratio and dissolved CO2. Eur J Miner 4:105–114Google Scholar
  31. Jambon A (1994) Earth degassing and large-scale geochemical cycling of volatile elements. In: Carroll MR, Holloway JR (eds) Volatiles in magmas, Reviews in Mineralogy 30. Mineralogical Society of America, pp 479–517Google Scholar
  32. Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib Miner Petrol 73:287–310Google Scholar
  33. Kamenetsky VS, Crawford AJ, Eggins S, Mühe R (1997) Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components. Earth Planet Sci Lett 151:205–223CrossRefGoogle Scholar
  34. Kamenetsky VS, Eggins SM, Crawford AJ, Green DH, Gasparon M, Falloon TJ (1998) Calcic melt inclusions in primitive olivine at 43°N MAR: evidence for melt-rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth Planet Sci Lett 160:115–132Google Scholar
  35. Kay SM, Kay RW (1985) Role of crystal cumulates and the oceanic crust in the formation of the lower crust of the Aleutian arc. Geology 13:461–464Google Scholar
  36. Kogiso T, Hirschmann MM (2001) Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib Miner Petrol 142:347–360Google Scholar
  37. Kushiro I (1969) The system forsterite-diopside-silica with and without water at high pressures. Am J Sci 267A:269–294Google Scholar
  38. Kushiro I (1990) Partial melting of mantle wedge and evolution of island arc crust. J Geophys Res 95:15929–15939Google Scholar
  39. Kushiro I (1996) Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Earth processes: reading the isotopic code. Geophys Monogr 95:109–102Google Scholar
  40. Laporte D, Toplis M, Seyler M, Devidal J-L (2004) A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib Miner Petrol 146:463–484CrossRefGoogle Scholar
  41. Libourel G (1999) Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivine. Contrib Miner Petrol 136:63–80CrossRefGoogle Scholar
  42. Maclenan J, McKenzie D, Grönvold K (2001) Plume-driven upwelling under central Iceland. Earth Planet Sci Lett 194:67–82CrossRefGoogle Scholar
  43. McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679Google Scholar
  44. O’Neill (1987) Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Miner 72:67–75Google Scholar
  45. O’Neill HSC, Pownceby MI (1993) Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe–“FeO”, Co–CoO, Ni–NiO and Cu–Cu2O oxygen buffers, and new data for the W-WO2 buffer. Contrib Miner Petrol 114:296–314Google Scholar
  46. Pertermann M, Hirschmann MM (2003) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res 108:2125. DOI 10.1029/2000JB000118CrossRefGoogle Scholar
  47. Pichavant M, Mysen BO, Macdonald R (2002) Source and H2O content of high-MgO magmas in island arc settings: an experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim Cosmochim Acta 66:2193–2209CrossRefGoogle Scholar
  48. Pickering-Witter J, Johnston AD (2000) The effects of variable bulk composition on the melting systematic of fertile peridotitic assemblages. Contrib Miner Petrol 140:190–211CrossRefGoogle Scholar
  49. Richard M (1986) Géologie et Pétrologie d’un jalon de l’arc Taïwan-Luzon : l’île de Batan (Philippines). PhD Thesis, Université de Bretagne OccidentaleGoogle Scholar
  50. Schairer JF, Yoder HS (1969) Critical planes and flow and flow sheet for a portion of the system CaO–MgO–Al2O3–SiO2 having petrological implications. Carnegie Inst. Washington. Ann Rept Dir Geophys Lab, pp 202–214Google Scholar
  51. Schiano P, Eiler JM, Hutcheon ID, Stolper EM (2000) Primitive CaO-rich, silica-undersaturated melts in island arcs: evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochem Geophys Geosys 1:1999GC000032Google Scholar
  52. Schmidt MW, Green DH, Hibberson WO (2004) Ultracalcic magmas generated from Ca-depleted mantle: an experimental study on the origin of ankaramites. J Petrol 45:531–554CrossRefGoogle Scholar
  53. Schwab BE, Johnston AD (2001) Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol 42:1789–1811CrossRefGoogle Scholar
  54. Sigurdsson IA, Steinthorsson S, Grönvold K (2000) Calcium-rich melt inclusions in Cr-spinels from Borgarhraun, northern Iceland. Earth Planet Sci Lett 183:15–26Google Scholar
  55. Slater L, McKenzie D, Grönvold K, Shimizu N (2001) Melt migration and movement beneath Theistareykir, NE Iceland. J Petrol 42:321–354CrossRefGoogle Scholar
  56. Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55Google Scholar
  57. Soulard H, Provost A, Boivin P (1992) CaO–MgO–Al2O3–SiO2–Na2O (CMASN) at 1 bar from low to high Na2O contents; topology of an analogue for alkaline basic rocks. Chem Geol 96:459–477CrossRefGoogle Scholar
  58. Thibault Y, Holloway JR (1994) Solubility of CO2 in a Ca-rich leucitite: effects of pressure, temperature, and oxygen fugacity. Contrib Miner Petrol 116:216–224Google Scholar
  59. Trønnes RG (1990) Basaltic melt evolution of the Hengill volcanic system, SW Iceland, and evidence for clinopyroxene assimilation in primitive tholeiitic magmas. J Geophys Res 95:15893–15910Google Scholar
  60. Turner S, Foden J, George R, Evans P, Varne R, Elburg M, Jenner G (2003) Rates and processes of potassic magma evolution beneath Sangeang Api volcano, East Sunda arc, Indonesia. J Petrol 44:491–515CrossRefGoogle Scholar
  61. Ulmer P (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition; an experimental study to 30 kbars. Contrib Miner Petrol 101:261–273Google Scholar
  62. Vielzeuf D, Clemens J (1992) The fluid-absent melting of phlogopite + quartz; experiments and models. Am Miner 77:1206–1222Google Scholar
  63. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60CrossRefGoogle Scholar
  64. Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44:1163–1191CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Etienne Médard
    • 1
    Email author
  • Max W. Schmidt
    • 2
  • Pierre Schiano
    • 1
  1. 1.Laboratoire Magmas et Volcans, OPGCUniversité Blaise Pascal—CNRSClermont-FerrandFrance
  2. 2.Institut für Mineralogie und PetrographieZürichSwitzerland

Personalised recommendations