Advertisement

Contributions to Mineralogy and Petrology

, Volume 147, Issue 1, pp 58–73 | Cite as

Geochemical and Sr-Nd-Pb isotopic characteristics of Late Cenozoic leucite lamproites from the East European Alpine belt (Macedonia and Yugoslavia)

  • R. Altherr
  • H.-P. Meyer
  • A. Holl
  • F. Volker
  • C. Alibert
  • M. T. McCulloch
  • V. Majer
Original Paper

Abstract

In the East European Alpine belt, leucite-sanidine-phlogopite-olivine-bearing volcanic rocks of Late Cenozoic age occur at eight localities within the Vardar suture zone and at one locality in the Southern Carpathian fold-and-thrust belt. Most of these volcanics are characterized by high Mg# (66.6–78.6), high abundances of Ni (117–373 ppm) and Cr (144–445 ppm) as well as high primary K2O contents (5.63–7.01 %) and K2O/Na2O values (1.93–4.91). Rocks with more differentiated compositions are rare. A lamproite affinity of these rocks is apparent from their relatively low contents of Al2O3 (9.9–14.3 wt%) and CaO (6.2–8.3 wt%) in combination with high abundances of Rb (85–967 ppm), Ba (1,027–4,189 ppm), Th (18.9–76.5 ppm), Pb (19–54 ppm), Sr (774–1,712 ppm) and F (0.16–0.52 wt%), and the general lack of plagioclase. Although eruption of the magmas took place in post-collisional extensional settings, significant depletions of Nb and Ta relative to Th and La, low TiO2 contents (0.92–2.17 %), low ratios of Rb/Cs, K/Rb and Ce/Pb as well as high ratios of Ba/La and Ba/Th suggest close genetic relationships to subduction zone processes. Whereas Sr and Nd isotope ratios show relatively large variations (87Sr/86Sr = 0.7078–0.7105, 143Nd/144Nd = 0.51242–0.51215), Pb isotope ratios display a very restricted range with 206Pb/204Pb = 18.68–18.88 and variable but generally high Δ7/4 (11–18) and Δ8/4 (65–95) values. The observed petrographic, geochemical and isotopic characteristics are best explained by a genetic model involving preferential melting of phlogopite-rich veins in an originally depleted lithospheric mantle source, whereby the metasomatic enrichment of the mantle source is tentatively related to the addition of components from subducted sediments during consumption of Tethyan oceanic lithosphere.

Keywords

Olivine Instrumental Neutron Activation Analysis Mantle Source Leucite Adriatic Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Danielle Dautel, Mark Fanning, Les Kinsley and Graham Mortimer for many long and helpful discussions. R.A. and F.V. acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) and A.H. gratefully acknowledges a Dr. rer. nat. scholarship by the ‘Land Baden-Württemberg’. The 1987 field trip to former Yugoslavia was supported by the Science Foundation and the Council for International Scientific and Technical Cooperation of Croatia. R.A. and A.H. still remember the outstanding hospitality and friendliness offered by the people regardless of ethnic or political affiliation. Special thanks are due to Roland Gehann, Jürgen Koepke, Burkhard Schulz-Dobrick, Charly Wacker (†) and Elke Weiher for technical assistance. Emily Lowe improved the English style and constructive reviews by Stephen Foley and Angelo Peccerillo helped to improve the manuscript.

References

  1. Antonović A (1965) Geology, tectonic structure and genesis of the arsenic-antimony ore deposits in the Lojane and Nikustak district (Skopska Crna Gora Mts.). Geološki Tsavod, SkopjeGoogle Scholar
  2. Avramović V (1960) Kratak prikaz leucitskih stena Visoče i Goleša (Gnjilane). Kurze Darstellung der Leucitgesteine von Visoca und Goles (Gnjilane). Zavod za geološka i geofizička istraživanja, Beograd Bull XVIII, Serija AGoogle Scholar
  3. Ayers JC, Dittmer SK, Layne GD (1997) Partitioning of elements between peridotite and H2O at 2.0–3.0 GPa and 900–1,100 °C, and application to models of subduction zone processes. Earth Planet Sci Lett 150:381–398CrossRefGoogle Scholar
  4. Barton M, Hamilton DL (1979) The melting relationships of a madupite from the Leucite Hills, Wyoming, to 30 kb. Contrib Mineral Petrol 69:133–142Google Scholar
  5. Barton M, Hamilton DL (1982) Water-undersaturated melting experiments bearing upon the origin of potassium-rich magmas. Mineral Mag 45:267–278Google Scholar
  6. Basaltic Volcanism Study Project (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, 1286 ppGoogle Scholar
  7. Ben Othman D, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94:1–21CrossRefGoogle Scholar
  8. Bergman SC (1987) Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geol Soc Spec Publ Lond, no 30, pp 103–190Google Scholar
  9. Boev B, Yanev Y (2001) Tertiary magmatism within the Republic of Macedonia: a review. Acta Vulcanol 13:57–71Google Scholar
  10. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  11. Bureau H, Keppler H (1999) Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet Sci Lett 165:187–186Google Scholar
  12. Class C, Altherr R, Volker F, Eberz G, McCulloch MT (1994) Geochemistry of Pliocene to Quaternary alkali basalts from the Huri Hills, northern Kenya. Chem Geol 113:1–12CrossRefGoogle Scholar
  13. Conticelli S (1998) The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, central Italy. Chem Geol 149:51–81CrossRefGoogle Scholar
  14. Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of mantle sources. Lithos 28:221–240Google Scholar
  15. Contini S, Venturelli G, Toscani L, Capedri S, Barbieri M (1993) Cr-Zr-armalcolite-bearing lamproites from Cancarix, SE Spain. Mineral Mag 57:203–216Google Scholar
  16. Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninites. Unwin Hyman Ltd, London, pp 1–49Google Scholar
  17. Cvijić J (1906) Osnovi za geografiju i geologiju Makedonije i Stare Srbije sa atlasom. BeogradGoogle Scholar
  18. Cvijić J (1908) Grundlinien der Geographie und Geologie von Mazedonien und Altserbien nebst Beobachtungen in Thrazien, Thessalien, Epirus und Nordalbanien. Dr. A Petermanns Mitteilungen aus Justus Perthes’ Geographischer Anstalt, Ergänzungsheft Nr. 162, GothaGoogle Scholar
  19. Edgar AD, Charbonneau HE, Mitchell RH (1992) Phase relations of an armalcolite-phlogopite lamproite from Smoky Butte, Montana: applications to lamproite genesis. J Petrol 33:505–520Google Scholar
  20. Evensen NM, Hamilton PJ, O’Nions RK (1978) Rare-earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212Google Scholar
  21. Foley SF (1989a) The genesis of lamproitic magmas in a reduced fluorine-rich mantle. In: Jaques AL, Ferguson L, Green DH (eds) Kimberlites and related rocks I. Their composition, occurrence, origin and emplacement, Blackwell, Melbourne, pp 616–631Google Scholar
  22. Foley SF (1989b) Experimental constraints on phlogopite chemistry in lamproites: 1. The effect of water activity and oxygen fugacity. Eur J Mineral 1:411–426Google Scholar
  23. Foley SF (1990) Experimental constraints on phlogopite chemistry in lamproites: 2. The effect of pressure-temperature variations. Eur J Mineral 2:327–341Google Scholar
  24. Foley SF (1992a) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28:187–204Google Scholar
  25. Foley SF (1992b) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic magmas. Lithos 28:435–453Google Scholar
  26. Foley SF (1993) An experimental study of olivine lamproite: first results from the diamond stability field. Geochim Cosmochim Acta 57:483–489Google Scholar
  27. Foley SF (1994) Geochemische und experimentelle Untersuchungen zur Genese der kalireichen Magmatite. Neues Jahrb Mineral Abh 167:1–55Google Scholar
  28. Foley SF, Taylor WR, Green DH (1986) The role of fluorine and oxygen fugacity in the genesis of the ultrapotassic rocks. Contrib Mineral Petrol 94:183–192Google Scholar
  29. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth-Science Rev 24:81–134Google Scholar
  30. Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchell RH, Scott-Smith BH (1985/86) Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet Sci Lett 76:57–70CrossRefGoogle Scholar
  31. Glišić M (1959) Pojava kajanita iz okoline Bogovine u Istočnoj Srbiji. The occurrence of kajanite in the surroundings of Bogovina (Eastern Serbia). Bull Serv Geol et Geophysique de la R.P. de Serbie XVII, BelgradeGoogle Scholar
  32. Hart SR (1984) A large-scale isotope anomaly in the southern hemisphere mantle. Nature 309:753–757Google Scholar
  33. Hart SR, Reid MR (1991) Rb/Cs fractionation: a link between granulite metamorphism and the S-process. Geochim Cosmochim Acta 55:2379–2383CrossRefGoogle Scholar
  34. Hawkesworth CJ, Fraser KJ, Rogers NW (1985) Kimberlites and lamproites: extreme products of mantle enrichment processes. Geol Soc S Afr Trans 88:439–447Google Scholar
  35. Hemming SR, McLennan SM (2001) Pb isotope compositions of modern deep-sea turbidites. Earth Planet Sci Lett 184:489–503CrossRefGoogle Scholar
  36. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314Google Scholar
  37. Jaques AL, Lewis JD, Smith CB (1986) The kimberlites and lamproites of Western Australia. Geol Surv West Austr Bull 132:1–268Google Scholar
  38. Jaques AL, Lewis JD, Smith CB, Gregory GP, Ferguson J, Chappell BW, McCulloch MT (1984) The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. In: Kornprobst J (ed) Kimberlites I: Kimberlites and related rocks. Elsevier, Amsterdam, pp 225–254Google Scholar
  39. Kononova VA, Terzik M, Sveshnikova E (1987) Petrochemical series of alkaline basalts in the Vardar zone and Carpathian Balkans (Yugoslavia). Macedonian Academy of Sciences and Arts, Contributions, Section of Mathematical and Technical Sciences 8:29–44Google Scholar
  40. Kononova VA, Sveshnikova YV, Drynkin VI, Gurevich AV, Belen BV (1991) Potassic and potassic-sodic series of volcanics in the Cenozoic of Yugoslavia. Int Geol Rev 33:793–806Google Scholar
  41. Kostić A, Simić V, Milojković R (1961) Alkalne bazaltoidne stene zegligova severno od Kumanova. Les roches basaltoide alcalines de Zegligovo au nord du Kumanovo. Bull Museum d’Histoire naturelle Belgrade, Série A, Livre 14–15Google Scholar
  42. Kostić A, Simić V, Antić R (1971) Leucit-tefritske lavobreče i šonkinit u selu Klinovcu južno od Vranja. La coulée-breche leucite-tephritique et le shonkinite dans le village Klinovac au sud de Vranje. Bull Museum d’Histoire naturelle Belgrade, Série A, Livre 25Google Scholar
  43. Kuehner SM, Edgar AD, Arima M (1981) Petrogenesis of the ultrapotassic rocks from the Leucite Hills, Wyoming. Am Mineral 66:663–677Google Scholar
  44. McDonough WF, Sun S-S, Ringwood AE, Jagoutz E, Hofmann AW (1992) Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim Cosmochim Acta 56:1001–1012CrossRefGoogle Scholar
  45. Melzer S, Wunder B (2001) K-Rb-Cs partitioning between phlogopite and fluid: experiments and consequences for the LILE signatures of island arc basalts. Lithos 59:69–90CrossRefGoogle Scholar
  46. Miller DM, Goldstein SL, Langmuir CH (1994) Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368:514–520Google Scholar
  47. Mitchell RH (1995a) Kimberlites, orangeites, and related rocks. Plenum Press, New York, 410 ppGoogle Scholar
  48. Mitchell RH (1995b) Melting experiments on a sanidine phlogopite lamproite at 4–7 GPa and their bearing on the sources of lamproitic magmas. J Petrol 36:1455–1474Google Scholar
  49. Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York, 441 ppGoogle Scholar
  50. Mitchell RH, Platt RG, Downey M (1987) Petrology of lamproites from Smoky Butte, Montana. J Petrol 28:645–677Google Scholar
  51. Nelson DR (1989) Isotopic characteristics and petrogenesis of the lamproites and kimberlites of central West Greenland. Lithos 22:265–274CrossRefGoogle Scholar
  52. Nelson DR (1992) Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithos 28:403–420CrossRefGoogle Scholar
  53. Nelson DR, McCulloch MT, Sun S-S (1986) The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochim Cosmochim Acta 50:231–245CrossRefGoogle Scholar
  54. Nelson DR, McCulloch MT (1989) Enriched mantle components and mantle recycling of sediments. In: Jaques AL, Ferguson L, Green DH (eds) Kimberlites and related rocks I. Their composition, occurrence, origin and emplacement. Blackwell, Melbourne, pp 560–570Google Scholar
  55. Nixon PH, Thirlwall MF, Buckley F, Davies CJ (1984) Spanish and western Australian lamproites: aspects of whole rock chemistry. In: Kornprobst J (ed) Kimberlites I: kimberlites and related rocks. Elsevier, Amsterdam, pp 285–296Google Scholar
  56. Peccerillo A (1992) Potassic and ultrapotassic rocks: compositional characteristics, petrogenesis and geological significance. Episodes 15:243–251Google Scholar
  57. Peccerillo A (1999) Multiple mantle metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. Geology 27:315–318CrossRefGoogle Scholar
  58. Peccerillo A, Manetti P (1985) The potassium alkaline volcanism of central-southern Italy: a review of the data relevant to petrogenesis and geodynamic significance. Trans Geol Soc S Afr 88:379–394Google Scholar
  59. Peccerillo A, Poli G, Serri G (1988) Petrogenesis of orenditic and kamafugitic rocks from central Italy. Can Mineral 26:45–65Google Scholar
  60. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394Google Scholar
  61. Poli G, Frey A, Ferrara G (1984) Geochemical characteristics of south Tuscany volcanic province: constraints on lava petrogenesis. Chem Geol 43:203–221CrossRefGoogle Scholar
  62. Prelević D, Foley SF, Cvetković V, Jovanović M, Melzer S (2001) Tertiary ultrapotassic-potassic rocks from Serbia, Yugoslavia. Acta Vulcanol 13:101–116Google Scholar
  63. Ristić P (1957) Alkali rocks of Gnjilane. Extrait du Compte rendu des Séances de la Société serbe de Géologie pour l’année 1956, BeogradGoogle Scholar
  64. Ristić P (1963) Vulkanske alkalne (leucitne) stene oblasti jugozapadno od Gnjilana. Institut za Rudarska i hemijsko-tehnološka istraživanja Sarajevskog Univerziteta, 87 ppGoogle Scholar
  65. Rogers NW (1992) Potassic magmatism as a key to trace-element enrichment processes in the upper mantle. J Volcanol Geotherm Res 50:85–99CrossRefGoogle Scholar
  66. Rogers NW, Hawkesworth CJ, Mattey DP, Harmon RS (1987) Sediment subduction and the source of potassium in orogenic leucitites. Geology 15:451–453Google Scholar
  67. Rosenbaum JM (1993) Mantle phlogopite: a significant Pb repository? Chem Geol 106:475–483CrossRefGoogle Scholar
  68. Salvioli-Mariani E, Venturelli G (1996) Temperature of crystallization and evolution of the Jumilla and Cancarix lamproites (SE Spain) as suggested by melt and solid inclusions in minerals. Eur J Mineral 8:1027–1039Google Scholar
  69. Schmidt KH, Bottazzi P, Vannucci R, Mengel K (1999) Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth Planet Sci Lett 168:287–299CrossRefGoogle Scholar
  70. Sekine T, Wyllie PJ (1982a) Phase relationships in the system KalSiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol 79:368–374Google Scholar
  71. Sekine T, Wyllie PJ (1982b) Synthetic systems for modelling hybridization between hydrous siliceous magmas and peridotite in subduction zones. J Geol 90:734–741Google Scholar
  72. Sekine T, Wyllie PJ (1982c) The system granite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Mineral Petrol 81:190–202Google Scholar
  73. Sheraton JW, Cundari A (1980) Leucitites from Gaussberg, East Antarctica. Contrib Mineral Petrol 71:417–427Google Scholar
  74. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33CrossRefGoogle Scholar
  75. Terzić M, Sveshnikova EV (1986) Age of the leucite rocks in Yugoslavia. Sbornik Serb Acad Nauki, Belgrade 3:283–288Google Scholar
  76. Thompson RN, Morrison MA, Hendry GL, Parry SJ (1984) An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Philos Trans R Soc London A 310:549–590Google Scholar
  77. Tomić JS (1928) Vulkanske projekcije na Kotleniku (Un nouveau gisement de basanite dans la Serbie Orientale près de Soko-Banja). Annales Géologiques de la peninsule balkanique IX, Fascicule 2, BeogradGoogle Scholar
  78. Tomić JS (1929) La série de trachite-kajanite dans la Serbie méridionale. Litološka serija trahit-kajanita iz oblasti ismedu Bregalnice i Vardara u Juznoj Srbiji. Glas SKA Beograd 137:3–42Google Scholar
  79. Toscani L, Contini S, Ferrarini M (1995) Lamproitic rocks from Cabezo Negro de Zeneta: brown micas as a record of magma mixing. Mineral Petrol 55:281–292Google Scholar
  80. Tućan F (1931) Leucitgesteine von Kurešnička Krasta bei Demirkapija. Leucitske stijene Kurešničke Kraste kod Demirkapije. Glasnik Skop nauč dr Skoplje 9/3:79–97Google Scholar
  81. Venturelli G, Capedri S, Di Battistini G, Crawford AJ, Kogarko LN, Celestini S (1984a) The ultrapotassic rocks from southeastern Spain. Lithos 17:37–54CrossRefGoogle Scholar
  82. Venturelli G, Thorpe RS, Dal Piaz GV, Del Moro A, Potts PJ (1984b) Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the Northwestern Alps, Italy. Contrib Mineral Petrol 86:209–220Google Scholar
  83. Venturelli G, Salvioli-Mariani E, Foley SF, Capedri S, Crawford AJ (1988) Petrogenesis and conditions of crystallization of Spanish lamproitic rocks. Can Mineral 26:67–79Google Scholar
  84. Venturelli G, Capedri S, Barbieri M, Toscani L, Salvioli-Mariani E, Zerbi M (1991a) The Jumilla lamproite revisited: a petrological oddity. Eur J Mineral 3:123–145Google Scholar
  85. Venturelli G, Toscani L, Salvioli-Mariani E (1991b) Mixing between lamproitic and dacitic components in Miocene volcanic rocks of SE Spain. Mineral Mag 55:282–285Google Scholar
  86. Venturelli G, Salvioli-Mariani E, Toscani L, Barbieri M, Gorgoni C (1993) Post-magmatic apatite + hematite + carbonate assemblage in the Jumilla lamproites. A fluid inclusion and isotope study. Lithos 30:139–150CrossRefGoogle Scholar
  87. Veselinović D, Pejović D, Pašić M (1958) Izveštaj o geološkom kartiranju i ispitivanju terena gornjeg toka reke Pčinje, okoline Bustrenja i Klenike. Fond stručnih dokumenata INGRI BeogradGoogle Scholar
  88. Vila JM, Hernandez J, Velde D (1974) Sur la présence d’un filon de roche lamproitique (trachyte potassique à olivine) recoupant le flysch de type Guerroch entre Azzaba (ex-Jemmapes) et Hammam-Meskoutine dans l’Est du Constantinois (Algerie). C R Acad Sci Paris Sér D 278:2589–2591Google Scholar
  89. Volker F, McCulloch MT, Altherr R (1993) Submarine basalts from the Red Sea: new Pb, Sr and Nd isotopic data. Geophys Res Lett 20:927–930Google Scholar
  90. Volker F, Kinsley L, Alibert C, Borchardt R, Schumacher R (2000) Mantle phlogopites from the Eifel volcanic field – a laser ablation ICP-MS study. Beih z Eur J Mineral 12 no 1:226Google Scholar
  91. Vollmer R (1989) On the origin of the Italian potassic magmas. I. A discussion contribution. Chem Geol 74:229–239CrossRefGoogle Scholar
  92. Wagner C, Velde D (1986) The mineralogy of K-richterite-bearing lamproites. Am Mineral 71:17–37Google Scholar
  93. Wagner C, Velde D (1987) Aluminous spinels in lamproites: occurrence and probable significance. Am Mineral 72:689–696Google Scholar
  94. White WM, Dupré B, Vidal P (1985) Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean. Geochim Cosmochim Acta 49:1875–1886CrossRefGoogle Scholar
  95. Woodhead JD, Volker F, McCulloch MT (1995) Routine lead isotope determinations using a lead-207–lead-204 double spike: a long-term assessment of analytical precision and accuracy. Analyst 120:35–39Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • R. Altherr
    • 1
  • H.-P. Meyer
    • 1
  • A. Holl
    • 2
  • F. Volker
    • 3
  • C. Alibert
    • 4
  • M. T. McCulloch
    • 5
  • V. Majer
    • 6
  1. 1.Mineralogisches InstitutUniversität HeidelbergHeidelbergGermany
  2. 2.A. HollKarlsruheGermany
  3. 3.Institut für Geowissenschaften und LithosphärenforschungUniversität GiessenGiessenGermany
  4. 4.Centre de Recherches Pétrographiques et GéochimiquesVandoeuvre-lès-NancyFrance
  5. 5.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  6. 6.Institute of Mineralogy, Petrology, and Economic GeologyRGN faculty, University of ZagrebZagrebCroatia

Personalised recommendations