Contributions to Mineralogy and Petrology

, Volume 147, Issue 5, pp 549–564 | Cite as

U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS

  • S. R. Smith
  • G. L. Foster
  • R. L. Romer
  • A. G. Tindle
  • S. P. Kelley
  • S. R. Noble
  • M. Horstwood
  • F. W. Breaks
Original Paper


U-Pb isotopic analyses using TIMS and Laser Ablation-Multi Collector-ICP-MS were carried out on columbite-tantalite minerals from three suites of rare-element (Li, Cs, Ta) pegmatites in the Superior Province of Canada. Conventional TIMS analyses of these columbite-tantalite crystals produce scattered data and reverse discordance even after HF leaching of the grains prior to dissolution, possibly reflecting the incomplete removal of the open-system metamict segments during sample preparation. LA-MC-ICP-MS analyses of unleached, primary columbite free from inclusions and alteration give consistent and precise (<0.5%) Pb-Pb ages, demonstrating the utility of this approach. However, normal and reverse discordance is also observed in U-Pb data from LA-MC-ICP-MS analyses. This discordance represents either U-Pb mobilisation during recent weathering, sample preparation and/or an analytical artefact originating from variable elemental fractionation between U and Pb during ablation and ionisation that itself may have its origin in the contrasting metamictization of the dated columbite and the monazite standard used. Best age estimates of columbite from pegmatites in the Superior Province are; 2670±5 Ma for the Pakeagama Lake pegmatite, 2644±7 Ma for the Separation Rapids group, and 2665±8 Ma for the Mavis Lake group. The ages broadly show that the rare-element pegmatites are temporally synchronous with adjacent peraluminous granites.


Thermal Ionisation Mass Spectrometry Backscatter Electron Image Oscillatory Zoning Spodumene Lithium Aluminosilicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



S. Smith acknowledges postgraduate studentship funding from The Open University and the Ontario Geological Survey. Analyses carried out at the NERC Isotope Geosciences Laboratory, Keyworth, were funded by ‘Isotopic Analytical Support’ from the Natural Environment Research Council, UK. Constructive reviews by R. Parrish and an anonymous reviewer greatly improved an earlier version of the manuscript.


  1. Abella P.A., Corbella M. and Melgarejo J.C. (1995) Nb-Ta- minerals from the Cap de Creus pegmatite field, eastern Pyrenees: distribution and geochemical trends. Mineral Petrol 55, 53–69.Google Scholar
  2. Breaks F.W. and Moore J.M. (1992) The Ghost Lake Batholith, Superior Province of Northwestem Ontario: A Fertile, S-Type, Peraluminous Granite—Rare-Element Pegmatite System. Canadian Mineralogist 30, 835–875.Google Scholar
  3. Breaks F.W., Tindle A.G. and Smith S.R. (1999a) Geology, mineralogy and exploration potential of the Big Mack pegmatite system : a newly discovered western extension of the Separation Rapids pegmatite group, NW Ontario., pp. 25–1 to 25–22. Ontario Geological Survey.Google Scholar
  4. Breaks F.W., Tindle A.G. and Smith S.R. (1999b) Rare-metal mineralisation associated with the Berens River—Sachigo Subprovincial boundary, northwestem Ontario: Discovery of a new zone of complex-type, petalite subtype pegmatite and implications for future exploration. In Summary of Field Work and Other Activities 1998, pp. 168–182. Ontario Geological Survey.Google Scholar
  5. Card K.D. and Ciesielski A. (1986) Subdivisions of the Superior Province. Geoscience Canada 13, 5–13.Google Scholar
  6. Cern_ P. Chapman R. Göd R. Niedermayr G. Wise MA. (1989) Exsolution intergrowths of titanian ferrocolumbite and niobian rutile from the Weinebene spodumene pegmatites, Carinthia, Austria. Mineral Petrol 40:197–206.Google Scholar
  7. Cerny P. and Ercit T.S. (1985) Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bull. Mineral. 108, 499–532.Google Scholar
  8. Cerny P. and Meintzer R.E. (1988) Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: crustal environment, geochemistry and petrogenetic relationships. The Canadian Institute of Mining and Metallurgy. pp. 170–206.Google Scholar
  9. Cerny P., Novak M. and Chapman R. (1992) Effects of siilimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Marsikov, northern Moravia, Czechoslovakia. Canadian Mineralogist 30, 699–718.Google Scholar
  10. Corfu F. (2000) Extraction of Pb with artificially too-old ages during stepwise dissolution experiments on Archean zircon. Lithos 53(3–4), 279–291.Google Scholar
  11. Corfu F. and Davis D.W. (1991) A U-Pb Geochronological Framework for the Western Superior Province, Ontario. In Geology of Ontario (eds. P. C. Thurston, H. R. Williams, R. H. Sutcliffe and G. M. Stott), pp. 1335–1346. Ontario Geological Survey, Toronto.Google Scholar
  12. Davis D.W., Krogh T.E. (2000) Preferential dissolution of 234U and radiogenic Pb from alpha-recoildamaged lattice sites in zircon; implications for thermal histories and Pb isotopic fractionation in the near surface environment. Chem Geol 172:41–58.CrossRefGoogle Scholar
  13. Geisler T. (2002) Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process. Phys Chem Minerals 29:420–429CrossRefGoogle Scholar
  14. Geisler T., Ulonska M., Schleicher H., Pidgeon RT., van Bronswijk W. (2001) Leaching and differential recrystallisation of metamict zircon under experimental hydrothermal conditions. Contrib Mineral Petrol 141:53–65.Google Scholar
  15. Geisler T., Pidgeon R. T., van Bronswijk W. and Kurtz R. (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chemical Geology 191(1–3), 141–154.Google Scholar
  16. Gerstenberger H., Haase G, (1997) A highly effective emitter substance for mass spectrometric isotope ratio determinations. Chern. Geol. 136:309–312.Google Scholar
  17. Guillong M. and Günther D. (2002) Effect of particle size distribution on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry. J. Anal. At. Spectrom., 17:831–837.Google Scholar
  18. Horn I., Rudnick R. and McDonough W.F. (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U-Pb geochronology. Chemical Geology 164, 281–301.Google Scholar
  19. Horstwood M.S.A., Foster G.L., Parrish R.R., Noble S.R., Nowell G.M. (2003) Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. J. Anal. At. Spectrom. 8:837–847.Google Scholar
  20. Kosler J., Tubrett M. and Sylvester P. (2001) Application of Laser Ablation ICP-MS to U-Th-Pb dating of monazite. The Journal of Geostandards and Geoanalysis 25, 2.Google Scholar
  21. Langford F.F. and Morin J.A. (1976) The Development of the Superior Province of Nortwestern Ontario by Merging Island Arcs. American Journal of Science 276, 1023–1034.Google Scholar
  22. Larbi Y., Stevenson R., Breaks F.W., Machado N. and Gariepy C. (1999) Age and isotopic composition of late Archean leucogranites: implications for continental collisio in the westem Superior Province. Canadian Journal of Earth Sciences 36, 495–510.Google Scholar
  23. Li X.-h., Liang X.-r., Sun M., Guan H. and Malpas J.G. (2001) Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation. Chemical Geology 175, 209–219.Google Scholar
  24. Lindroos A., Romer R.L., Ehlers C. and Alviola R. (1996) Late-orogenic Svecofennian deformation in SW Finland constrained through pegmatite emplacement ages. Terra Nova 8, 567–574.Google Scholar
  25. London D. (1984) Experimental phase equilibria in the system LiAlSiO4-Si2O-H2O: a petrogenetic grid for lithium-rich pegmatites. American Mineralogist 69, 995–1004.Google Scholar
  26. London D. (1986) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase equilibrium experiments. American Mineralogist 71, 376–395.Google Scholar
  27. London D. (1987) Intemal differentiation of rare-element pegmatites: Effects of boron, phosphorus and fluorine. Geochimica et Cosmochimica Acta 51, 403–420.Google Scholar
  28. London D., Morgan G.B., Babb H.A. and Loomis J.L. (1993) Behaviour and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa (H2O). Contrib. Mineral. Petrol. 113, 450–465.Google Scholar
  29. Ludwig K.R. (2000) Isoplot/Ex version 2.22, pp. 53. Berkely Geochronology Center. Special publication No. 1a.Google Scholar
  30. Manhes G., Minster J.F., Allègre C.J. (1978) Comparative uranium-thorium-lead and rubidium-strontium study of the saint sèverin amphoterite: consequences for early solar system chronology. Earth Planet. Sci. Lett. 39:14–24.Google Scholar
  31. Mattinson JM (1997) Analysis of zircon by multi-step partial dissolution: the good, the bad, and the ugly. Geol Assoc Can Meet, Ottawa ‘97, Abstract A98.Google Scholar
  32. Mattinson JM (2000) U-Pb Zircon Analysis by “Chemical Abrasion”: Combined High-Temperature Annealing and Partial Dissolution Analysis. EOS Trans Am Geophys Union 81:S27.Google Scholar
  33. Mattinson JM (2001) Zircon radiation damage, annealing, dissolution and Pb diffusion. 11th Annual VM Goldschmidt Conf. Abstr vol, 3625.pdf.Google Scholar
  34. Mattinson J.M., Gaubard CM, Parkinson DL, McLelland WC (1996) U-Pb reverse discordance in zircons: the role of fine scale oscillatory zoning and sub-microscopic transport of Pb. Am Geophys Union Geophys Monogr 95, 355–370.Google Scholar
  35. Mauthner MHF, Mortensen JK, Groat LA, Echt TS (1995) Geochronology of the Little Nahanni pegmatite group, Selwyn Mountains, southwestern Northwest Terretories. Can J Earth Sci 32:2090–2097.Google Scholar
  36. Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520.CrossRefGoogle Scholar
  37. Pan Y. and Breaks F. W. (1997) Rare-Earth Elements in Fluorapatite, Separation Lake Area, Ontario: Evidence for S-Type Granite—Rare-Element Pegmatite Linkage. Canadian Mineralogist 35:659–671.Google Scholar
  38. Parrish R., Nowell G., Noble S.R., Horstwood M.A., Timmermann H., Shaw P. and Bowen I. (1999) LA-PIMMS: A New Method of U-Th-Pb Geochronology Using Micro-Sampling Techniques. J. Conf Abstr. 4(1), p.799.Google Scholar
  39. Romer R.L. (2003) Alpha-recoil in U-Pb geochronology: effective sample size matters. Contrib Mineral Petrol 145:481–491.CrossRefGoogle Scholar
  40. Romer R.L. and Smeds S.A. (1994) Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield. Precambrian Research 67, 141–158.Google Scholar
  41. Romer R.L. and Smeds S.A. (1996) U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestem Sweden. Precambrian Research 76, 15–30.Google Scholar
  42. Romer R.L. and Smeds S.A. (1997) U-Pb columbite chronolgy of post-kinematic Palaeoproterozoic pegmatites in Sweden. Precambrian Research 82, 85–99.Google Scholar
  43. Romer R.L., Smeds S.A. and Cerny P. (1996) Crystal-chemical and genetic controls of U-Pb systematics of columbite-tantalite. Mineral Petrol 57, 243–260.Google Scholar
  44. Romer R.L. and Wright J.E. (1992) U-Pb dating of columbites: A geochronologic tool to date magmatism and ore deposits. Geochimica et Cosmochimica Acta 56, 2137–2142.Google Scholar
  45. Seydoux-Guillaume A-M, Paquette J-L, Wiedenbeck M, Montel J-M, Heinrich W (2003) Experimental resetting of the U-Th-Pb systems in monazite. Chem Geol 191:165–181.CrossRefGoogle Scholar
  46. Smith S.R. (2001) Geochemistry and Geochronology of Rare-Element Pegmatites from the Superior Province of Canada. Unpublished PhD thesis. The Open University, Milton Keynes, UK.Google Scholar
  47. Stacey J. S. and Kramers J. D. (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26(2), 207–221.Google Scholar
  48. Thurston P.C. (1991) Northwestern Superior Province: Review and Terrane Analysis. In Geology of Ontario (eds. P.C. Thurston, H.R. Williams, R.H. Sutcliffe and G.M. Stott), pp. 81–144. Ontario Geological Survey, Toronto.Google Scholar
  49. Tilton G.R. 1973 Isotopic lead ages of chondritic meteorites. Earth Planet. Sci. Lett. 19, pp. 321–329.Google Scholar
  50. Tindle A.G. and Breaks F.W. (1998) Oxide minerals of the Separation Rapids rare-element granitic pegmatite group, northwestem Ontario. Canadian Mineralogist 36, 609–635.Google Scholar
  51. Tindle A.G. and Breaks F.W. (2000) Columbite-tantalite mineral chemistry from rare-element granitic pegmatites: Separation Lake area, N.W. Ontario, Canada. Mineral Petrol 70, 165–198.Google Scholar
  52. Weber WJ, Ewing RC, Wang L-M (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698.Google Scholar
  53. Willigers B.J.A., Baker J.A., Krogstad E. J. and Peate D.W. (2002) Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS. Geochimica et Cosmocliimica Acta 66(6), 1051–1066.Google Scholar
  54. Wood S.A. and Williams-Jones A.E. (1993) Theoretical studies of the alteration of spodumene, petalite, eucryptite and pollucite in granitic pegmatites: exchange reactions with alkali feldspars. Contrib Mineral Petrol 114, 255–263.Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • S. R. Smith
    • 1
    • 6
  • G. L. Foster
    • 2
    • 5
  • R. L. Romer
    • 3
  • A. G. Tindle
    • 1
  • S. P. Kelley
    • 1
  • S. R. Noble
    • 2
  • M. Horstwood
    • 2
  • F. W. Breaks
    • 4
  1. 1.Dept. of Earth SciencesThe Open UniversityMilton KeynesUK
  2. 2.NERC Isotope Geosciences LaboratoryNottinghamUK
  3. 3.GeoForschungsZentrum PotsdamGermany
  4. 4.Ontario Geological SurveySudburyCanada
  5. 5.Department of GeologyLeicester UniversityLeicesterUK
  6. 6.Geological Survey of CanadaOttawaCanada

Personalised recommendations