Advertisement

Contributions to Mineralogy and Petrology

, Volume 146, Issue 1, pp 28–43 | Cite as

Residence time of S-type anatectic magmas beneath the Neogene Volcanic Province of SE Spain: a zircon and monazite SHRIMP study

  • Bernardo CesareEmail author
  • Maria Teresa Gómez-Pugnaire
  • Daniela Rubatto
Original Paper

Abstract

Zircon and monazite from three restitic enclaves and one host dacite have been dated by ion microprobe (SHRIMP), with the aim of characterising their Miocene history and defining the timing relationships between crustal melting and eruption in the high-K calc-alkaline volcanics of the Neogene Volcanic Province of SE Spain. The studied samples are from the volcanic edifices of El Joyazo (Cerro del Hoyazo) and Mazarrón. Zircons in the enclaves are characterized by a thin euhedral rim overgrowing a detrital core. The core-rim boundary is marked by tiny glass inclusions of S-type granitic composition, which attest to the growth of zircon rims during a crustal melting event. At El Joyazo, where lavas erupted at 6.3 Ma (Zeck and Williams 2002), U-Pb ages of zircon overgrowths define an age of anatexis of 9.63±0.26 Ma (95% c.l.), in agreement with monazite ages of 9.74±0.21 Ma (95% c.l.). At Mazarrón, the age of anatexis provided by monazite at 9.13±0.18 Ma (95% c.l.) overlaps with that of melt-precipitated zircon in the host dacite, dated at 9.06±0.53 Ma (95% c.l.). These results indicate that after partial melting, the enclaves and the syngenetic S-type melts resided at depth for >3 m.y. at El Joyazo. Compared with the results from Mazarrón, the long residence time obtained at El Joyazo is probably due to the greater depth of melting (c. 25 km vs. c. 15 km). At such depth, corresponding to the Miocene palaeo-Moho, the more ductile regime of the crust is likely to have favoured magma ponding. The thermal anomaly beneath the Neogene Volcanic Province, which generated the S-type crustal melts, is today visible from geophysical data and can be traced back to the Lower Miocene. As a consequence, residence times longer than determined in this work may be expected.

Keywords

Zircon Source Rock Partial Melting Cordierite Sillimanite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Many thanks to M. Fernández, A.M. Fioretti, S. Meli, and S. Tommasini for discussions, and to A. Möller, M. Bröcker, S. Turner and I. Williams for their thoughtful reviews. We acknowledge funding from the Università di Padova (Progetti di Ricerca) and C.N.R. (Westmed Euromargins ESF Eurocore) to B.C. and from Project BTE-2000-1489 (MCT) and RNM-145 (JA) to M.T.G-P. D.R thanks the Electron Microscopy Unit at the Australian National University for access to the SEM facilities and the Institute of Advanced Studies for financial support.

References

  1. Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203:937–955CrossRefGoogle Scholar
  2. Arnold J, Jacoby WR, Schmeling H, Schott B (2001) Continental collision and the dynamic and thermal evolution of the Variscan orogenic crust—numerical models. J Geodyn 31:273–291CrossRefGoogle Scholar
  3. Benito R, Lopez-Ruiz J, Cebriá JM, Hertogen J, Doblas M, Oyarzun R, Demaiffe D (1999) Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic Neogene volcanic rocks of SE Spain. Lithos 46:773–802CrossRefGoogle Scholar
  4. Calvert A, Sandvol E, Seber D, Barazangi M, Roecker S, Mourabit T, Vidal F, Alguacil G, Jabour N (2000) Geodynamic evolution of the lithosphere and upper mantle beneath the Alborán region of the western Mediterranean: Constraints from travel time tomography. J Geophys Res 105:10871–10898CrossRefGoogle Scholar
  5. Carbonell R, Sallarés V, Pous J, Dañobeitia JJ, Queralt P, Ledo JJ, García-Dueñas V (1998) A multidisciplinary geophysical study in the Betic chain (southern Iberian Peninsula). Tectonophysics 288:137–152CrossRefGoogle Scholar
  6. Cesare B (2000) Incongruent melting of biotite to spinel in a quartz-free restite at El Joyazo (SE Spain): Textures and reaction characterization. Contrib Mineral Petrol 139:273–284CrossRefGoogle Scholar
  7. Cesare B, Gómez-Pugnaire MT (2001) Crustal melting in the Alborán domain: constraints from the xenoliths of the Neogene Volcanic Province. Phys Chem Earth (A) 26:255–260Google Scholar
  8. Cesare B, Gómez-Pugnaire MT, Sanchez-Navas A, Grobety B (2002) Andalusite-sillimanite replacement (Mazarrón, SE Spain): microstructural and TEM study. Am Mineral 87:433–444Google Scholar
  9. Cesare B, Maineri C (1999) Fluid-present anatexis of metapelites at El Joyazo (SE Spain): constraints from raman spectroscopy of graphite. Contrib Mineral Petrol 135:41–52CrossRefGoogle Scholar
  10. Cesare B, Salvioli Mariani E, Venturelli G (1997) Crustal anatexis and melt segregation in the restitic xenoliths at El Hoyazo (SE Spain). Mineral Mag 61:15–27Google Scholar
  11. Cesare B, Marchesi C, Hermann J, Gómez-Pugnaire MT (2003) Primary melt inclusions in andalusite from anatectic graphitic metapelites: Implications for the position of the Al2SiO5 triple point. Geology 31:573–576CrossRefGoogle Scholar
  12. Chakraborty S, Ganguly J (1991) Compositional zoning and cation diffusion in aluminosilicate garnets. In: Ganguly J (ed) Diffusion, atomic ordering and mass transport—selected problems in geochemistry. Advances in physical geochemistry, vol 8, Springer, Berlin Heidelberg New York, pp 120–170Google Scholar
  13. Cherniak DJ, Watson BE, Harrison MT, Grove M (2000) Pb diffusion in monazite: a progress report on a combined RBS/SIMS study. Suppl, Eos Trans 41 p 25Google Scholar
  14. Comas MC, Platt JP, Soto JI, and Watts AB (1999) The origin and tectonic history of the Alborán Basin: Insights from Leg 161. In: Zahn R, Comas MC, Klaus A (eds) Proceedings ODP, Scientific Results, 161, 555–579Google Scholar
  15. Compston W, Williams IS, Kirschvink JL, Zhang Z, Ma G (1992) Zircon U-Pb ages for the Early Cambrian time-scale. J Geol Soc Lond 149:171–184Google Scholar
  16. Copeland P, Parrish RR, Harrison TM (1988) Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics. Nature 333:760–763Google Scholar
  17. Davies GR, Halliday AN (1998) Development of the Long Valley rhyolitic magma system: Strontium and neodynium isotope evidence from glasses and individual phenocrysts. Geochim Cosmochim Acta 62:3561–3574Google Scholar
  18. De Larouziere FD, Bolze J, Bordet P, Hernandez J, Montenat C, Ott d'Estevou P (1988) The betic segment of the lithospheric Trans-Alborán shear zone during the late Miocene. Tectonophysics 152:41–52Google Scholar
  19. Egeler CG, Simon OJ (1969) Sur la tectonique de la Zone Bétique (Cordillères Bétiques, Espagne). Verhanndelingen der Koninklijke Nederlandse Akademie van Wetenshappen 25:1-90Google Scholar
  20. Fallot P, Faure-Muret A, Fontboté JM, Sole-Sabaris L (1960) Estudios sobre las series de Sierra Nevada y de la llamada Mischungszone. Bol Inst Geol Min 71:347–557Google Scholar
  21. Fernández M, Marzán I, Correia A, Ramalho E (1998) Heat flow, heat production and lithospheric thermal regime in the Iberian Peninsula. Tectonophysics 291, 29–53Google Scholar
  22. Fernández-Soler JM (1996) El volcanismo calco-alcalino en el parque natural de Cabo de Gata-Níjar (Almería). Estudio Volcanológico y Petrológico. Sociedad Almeriense de Historia Natural. Monografías del Medio Natural 2:1-295Google Scholar
  23. Gómez-Pugnaire MT, Franz G, López Sánchez-Vizcaíno V (1994) Retrograde formation of NaCl-scapolite in high-pressure metaevaporites from the Cordilleras Béticas (Spain), Contrib Mineral Petrol 116:448–461Google Scholar
  24. Heath E, Turner SP, Macdonald R, Hawkesworth CJ, van Calsteren P (1998) Long magma residence times at an island arc volcano (Soufriere, St. Vincent) in the Lesser Antilles: evidence from 238 U–230 Th isochron dating. Earth Planet Sci Lett 160:4-63CrossRefGoogle Scholar
  25. Janssen ME, Torné M, Cloethingh S, Banda E (1993) Pliocene uplift of the eastern Iberian margin: inferences from quantitative modeling of the Valencia Through. Earth Planet Sci Lett 119:585–597CrossRefGoogle Scholar
  26. Keay S, Lister G, Buick I (2001) The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece. Tectonophysics 342:275–312Google Scholar
  27. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  28. Kriegsman LM, Hensen BJ (1998) Back reaction between restite and melt: Implications for geothermobarometry and pressure–temperature paths. Geology 26:1111–1114CrossRefGoogle Scholar
  29. Lee JKW, Williams IS, Ellis DJ (1997) Pb, U and Th diffusion in natural zircon. Nature 390:159–161CrossRefGoogle Scholar
  30. Lopez Ruiz J, Rodriguez Badiola E (1980) La region volcanica Neogena del sureste de Espana. Estud Geol 36:5–63Google Scholar
  31. Ludwig KR (2000) Isoplot/Ex version 2.4. A geochronological toolkit for Microsoft Excel. Berkeley, Berkeley Geochr Centre Spec Pub: 56Google Scholar
  32. Montel JM, Kornprobst J, Vielzeuf D (2000) Preservation of old U–Th–Pb ages in shielded monazite: example from the Beni Boussera Hercynian kinzingites (Morocco). J Metamorph Geol 18:335–342CrossRefGoogle Scholar
  33. Ossan A (1889) Beiträge zur Kenntnis der Eruptiv gesteine des Cabo de Gata (Prov. Almería). Z Dtsch Geol Ges 41:287–311Google Scholar
  34. Nichols GT, Berry RF, Green DH (1992) Internally consistent gahnitic spinel-cordierite-garnet equilibria in the FMASHZn system: geothermobarometry and applications. Contrib Mineral Petrol 111:362–377Google Scholar
  35. Parrish RR (1990) U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450Google Scholar
  36. Platt J, Vissers RLM (1989) Extensional collapse of thickened continental lithosphere: a working hypothesis for the Alborán Sea and Gibraltar arc. Geology 17:540–543CrossRefGoogle Scholar
  37. Platt JP, Soto JI, Whitehouse MJ, Hurford AJ, Kelley SP (1998) Thermal evolution, rate of exhumation, and tectonic significance of metamorphic rocks from the floor of the Alborán extensional basin, western Mediterranean. Tectonics 17:671–689Google Scholar
  38. Platt JP, Whitehouse MJ (1999) Early Miocene high-temperature metamorphism and rapid exhumation in the Betic Cordillera (Spain): evidence from U–Pb zircon ages. Earth Planet Sci Lett 171:591–605CrossRefGoogle Scholar
  39. Platt JP, Whitehouse MJ, Kelley SP, Carter A, Hollick L (2003) Simultaneous extensional exhumation across the Alborán Basin: Implications for the causes of late orogenic extension. Geology 31:251–254CrossRefGoogle Scholar
  40. Polyak BG, Fernàndez M, Khutorskoy MD, Soto JI, Basov IA, Comas MC, Khain VYe, Alonso B, Agapova GV, Mazurova IS, Negredo A, Tochitsky VO, Bogdanov NA, Banda E (1996) Heat flow in the Alborán Sea (the western Mediterranean) Tectonophysics 263:191–218Google Scholar
  41. Pous J, Queralt P, Ledo JJ, Roca E (1999) A high electrical conductive zone at lower crustal depth beneath the Betic Chain (Spain). Earth Planet Sci Lett 167:35–45CrossRefGoogle Scholar
  42. Reid MR, Coath CD, Harrison TM, McKeegan KD (1997) Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230 Th-238 U ion microprobe dating of young zircons. Earth Planet Sci Lett 150:327–39CrossRefGoogle Scholar
  43. Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468Google Scholar
  44. Teufel S, Heinrich W (1997) Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chem Geol 137:273–281CrossRefGoogle Scholar
  45. Torne M, Fernández M, Comas MC, Soto JI (2000) Lithospheric structure beneath the Alborán Basin: Results from 3D Gravity modelling and tectonic relevance. J Geoph Res 105:3209–3228CrossRefGoogle Scholar
  46. Turner SP, Platt JP, George RMM, Kelley SP, Pearson DG, Nowell GM (1999) Magmatism associated with orogenic collapse of the Betic-Alborán Domain, SE Spain. J Petrol 40:1011–1036Google Scholar
  47. Vavra G, Gebauer D, Schmidt R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (southern Alps): an ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122:337–358CrossRefGoogle Scholar
  48. Vissers RLM, Platt JP, van der Wal D (1995) Late orogenic and compositional constraints on 'post orogenic' magmatism. Geology extension of the Betic Cordillera and the Alborán Domain: a lithospheric view. Tectonics 14:786–803Google Scholar
  49. Williams IS (2001) Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Aust J Earth Sci 48:557–580CrossRefGoogle Scholar
  50. Williams IS, Buick IS, Cartwright I (1996) An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. J Metamorph Geol 14:29–47Google Scholar
  51. Zappone A, Fernández M, García-Dueñas V, Burlini L (2000) Laboratory measurements of seismic P-wave velocities on rocks from the Betic chain (southern Iberian Peninsula). Tectonophysics 317:259–272CrossRefGoogle Scholar
  52. Zeck HP (1968) Anatectic origin and further petrogenesis of almandine-bearing biotite-cordierite-labradorite-dacite with many inclusions of restite and basaltoid material, Cerro de Hoyazo, SE Spain. PhD Thesis, AmsterdamGoogle Scholar
  53. Zeck HP (1970) An erupted migmatite from Cerro de Hoyazo, SE Spain. Contrib Mineral Petrol 26:225–246Google Scholar
  54. Zeck HP (1992) Restite-melt and mafic-felsic magma mingling in an S-type dacite, Cerro del Hoyazo, southeastern Spain. Trans R Soc Edinb: Earth Sci 83:139–144Google Scholar
  55. Zeck HP (1996) Betic-Rif orogeny: subduction of Mesozoic Tethys lithosphere under eastward drifting Iberia, slab detachment shortly before 22 Ma, and subsequent uplift and extensional tectonics. Tectonophysics 254:1-16CrossRefGoogle Scholar
  56. Zeck HP, Kristensen AB, Williams IS (1998) Post-collisional volcanism in a sinking slab setting—crustal anatectic origin of pyroxene-andesite magma, Caldear Volcanic Group, Neogene Alborán volcanic Province, southeastern Spain. Lithos 45:499–522CrossRefGoogle Scholar
  57. Zeck HP, Monie P, Villa IM, Hansen BT (1992) Very high rates of cooling and uplift in the Alpine belt of the Betic Cordilleras, southern Spain. Geology 20:79–82CrossRefGoogle Scholar
  58. Zeck HP, Whitehouse MJ (2002) Pre-eruptional magmatic zircon, Neogene Alborán volcanic province, SE Spain. J Geol Soc Lond 159:343–346Google Scholar
  59. Zeck HP, Williams I (2002) Inherited and magmatic zircon from Neogene Hoyazo cordierite dacite, SE Spain—Anatectic source rock provenance and magmatic evolution. J Petrol 43:1089–1104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Bernardo Cesare
    • 1
    • 2
    Email author
  • Maria Teresa Gómez-Pugnaire
    • 3
  • Daniela Rubatto
    • 4
    • 5
  1. 1.Dipartimento di Mineralogia e PetrologiaUniversità di PadovaPadovaItaly
  2. 2.C.N.R. Istituto di Geoscienze e GeorisorseCorso Garibaldi 37PadovaItaly
  3. 3.Departamento de Mineralogía y PetrologíaFacultad de Ciencias, Universidad de GranadaGranadaSpain
  4. 4.Research School of Earth SciencesAustralian National UniversityCanberraAustralia
  5. 5.Department of GeologyAustralian National UniversityCanberra Australia

Personalised recommendations