pp 1–4 | Cite as

The CALIPER-Revised Version of the Composite Physiologic Index is a Better Predictor of Survival in IPF than the Original Version

  • Karishma S. Hosein
  • Gianluigi Sergiacomi
  • Maurizio Zompatori
  • Marco MuraEmail author


CALIPER is a computer-based quantitative algorithm to accurately characterize and quantify pulmonary fibrosis, and a revised version of composite physiologic index (CPI) has been developed against this new algorithm. The prognostic capabilities of the original and CALIPER-revised versions of CPI were compared in a cohort of 185 patients with IPF prospectively followed in 2 centers. CALIPER-revised CPI was a significant risk factor towards lung transplant (LTx)-free survival, with enhanced hazard ratio (5.68) compared to the original CPI (5.36). Accuracy of LTx-free survival was substantially improved with CALIPER-revised CPI (area under the curve [AUC] 0.75 vs. 0.66), with much better specificity (83% vs. 55%). Six-month changes of CALIPER-revised CPI predicted survival significantly (AUC 0.65). CALIPER-revised CPI is a better predictor of LTx-free survival in patients with IPF. Since CALIPER technology is not available to all centers, this simple and easy to obtain tool may be used to guide management decisions in IPF.


Idiopathic pulmonary fibrosis Survival Prognosis CALIPER CPI 



Supported by the Western University Department of Medicine Research Fund (recipient Dr. Marco Mura).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Fisher J, AlHejaili F, Kendel S, Hirji A, Shapera S, Mura M (2017) Multi-dimensional scores to predict mortality in patients with idiopathic pulmonary fibrosis undergoing lung transplantation assessment. Respir Med 125:65–71CrossRefGoogle Scholar
  2. 2.
    Lynch DA, Godwin JD, Safrin S, Starko KM, Hormel P, Brown KK, Raghu G, King TE Jr, Bradford WZ, Schwartz DA, Richard Webb W (2005) High-resolution computed tomography in idiopathic pulmonary fibrosis: diagnosis and prognosis. Am J Respir Crit Care Med 172:488–493CrossRefGoogle Scholar
  3. 3.
    Rozanski C, Mura M (2014) Multi-dimensional indices to stage idiopathic pulmonary fibrosis: a systematic review. Sarcoidosis Vasc Diffuse Lung Dis 31:8–18PubMedGoogle Scholar
  4. 4.
    Serajeddini H, Rogliani P, Mura M (2018) Multi-dimensional assessment of idiopathic pulmonary fibrosis across a wide range of disease severity. Lung 196:707–713CrossRefGoogle Scholar
  5. 5.
    Wells AU, Desai SR, Rubens MB, Goh NS, Cramer D, Nicholson AG, Colby TV, du Bois RM, Hansell DM (2003) Idiopathic pulmonary fibrosis: a composite physiologic index derived from disease extent observed by computed tomography. Am J Respir Crit Care Med 167:962–969CrossRefGoogle Scholar
  6. 6.
    Schmidt SL, Nambiar AM, Tayob N, Sundaram B, Han MK, Gross BH, Kazerooni EA, Chughtai AR, Lagstein A, Myers JL, Murray S, Toews GB, Martinez FJ, Flaherty KR (2011) Pulmonary function measures predict mortality differently in IPF versus combined pulmonary fibrosis and emphysema. Eur Respir J 38:176–183CrossRefGoogle Scholar
  7. 7.
    Hosein K, Le J, Mura M (2017) Assessing the therapeutic response to pirfenidone in patients with idiopathic pulmonary fibrosis: can we do better than with forced vital capacity alone? Lung 195:101–105CrossRefGoogle Scholar
  8. 8.
    Lee SH, Park JS, Kim SY, Kim DS, Kim YW, Chung MP, Uh ST, Park CS, Park SW, Jeong SH, Park YB, Lee HL, Shin JW, Lee EJ, Lee JH, Jegal Y, Lee HK, Kim YH, Song JW, Park MS (2018) Comparison of CPI and GAP models in patients with idiopathic pulmonary fibrosis: a nationwide cohort study. Sci Rep 8:4784CrossRefGoogle Scholar
  9. 9.
    Jacob J, Bartholmai BJ, Rajagopalan S, Kokosi M, Nair A, Karwoski R, Raghunath SM, Walsh SL, Wells AU, Hansell DM (2016) Automated quantitative computed tomography versus visual computer tomography scoring in idiopathic pulmonary fibrosis: validation against pulmonary function. J Thorac Imaging 31:304–311CrossRefGoogle Scholar
  10. 10.
    Jacob J, Bartholmai BJ, Rajagopalan S, Kokosi M, Nair A, Karwoski R, Walsh SL, Wells AU, Hansell DM (2017) Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures. Eur Respir J. CrossRefPubMedGoogle Scholar
  11. 11.
    Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F, Flaherty KR, Wells A, Martinez FJ, Azuma A, Bice TJ, Bouros D, Brown KK, Collard HR, Duggal A, Galvin L, Inoue Y, Jenkins RG, Johkoh T, Kazerooni EA, Kitaichi M, Mansour G, Nicholson AG, Popavath SNJ, Buendia-Roldan I, Selman M, Travis WD, Walsh S, Wilson KC (2018) Diagnosis of idiopathic pulmonary fibrosis. An officiant ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 198:e44–e86CrossRefGoogle Scholar
  12. 12.
    Flaherty KR, King TE Jr, Raghu G, Lynch JP III, Colby TV, Travis WD, Gross BH, Kazerooni EA, Toews GB, Long Q, Murray S, Lama VN, Gay SE, Martinez FJ (2004) Idiopathic interstitial pneumonia: what is the effect of a multidisciplinary approach to diagnosis? Am J Respir Crit Care Med 170:904–910CrossRefGoogle Scholar
  13. 13.
    Ley B, Ryerson CJ, Vittinghoff E, Ryu JH, Tomassetti S, Lee JS, Poletti V, Buccioli M, Elicker BM, Jones KD, King TE Jr, Collard HR (2012) A multidimensional index and staging system for idiopathic pulmonary fibrosis. Ann Intern Med 156:684–691CrossRefGoogle Scholar
  14. 14.
    Salisbury ML, Xia M, Zhou Y, Murray S, Tayob N, Brown KK, Wells AU, Schmidt SL, Martinez FJ, Flaherty KR (2016) Idiopathic pulmonary fibrosis: gender-age-physiology index stage for predicting future lung function decline. Chest 149:491–496CrossRefGoogle Scholar
  15. 15.
    du Bois EM, Albera C, Bradford WZ, Costabel U, Leff JA, Noble PW, Sahn SA, Veleyre D, Weycker D, King TE Jr (2014) 6-minute walk distance is an independent predictor of mortality in patients with idiopathic pulmonary fibrosis. Eur Respir J 43:1421–1429CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Respirology, Department of MedicineWestern UniversityLondonCanada
  2. 2.Diagnostica Per Immagini e Radiologia Interventistica, Policlinico Tor VergataUniversity of Rome “Tor Vergata”RomeItaly
  3. 3.Radiologia, MultiMedica Group, I.R.C.C.S. San Giuseppe HospitalMilanItaly

Personalised recommendations