Advertisement

Lung

pp 1–9 | Cite as

Gene Variants, mRNA and NOD1/2 Protein Levels in Tunisian Childhood Asthma

  • Rafik BelhajEmail author
  • Wajih Kaabachi
  • Ikbel Khalfallah
  • Basma Hamdi
  • Kamel Hamzaoui
  • Agnes Hamzaoui
ASTHMA
  • 7 Downloads

Abstract

Introduction

Asthma is a common respiratory childhood disease that results from an interaction between genetic, environmental and immunologic factors. The implication of nucleotide-binding and oligomerization domain 1 and 2 (NOD1/CARD4, NOD2/CARD15) was highlighted in many inflammatory diseases.

Methods

In this case-control study, we analyzed the association of three NOD2 polymorphisms and one NOD1 variant, in 338 Tunisian asthmatic children and 425 healthy Controls, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. We also assessed NOD1 and NOD2 mRNA and protein levels by qRT-PCR and ELISA techniques.

Results

The homozygous AA genotype of rs2075820 was a risk factor for asthma (OR 2.39). The influence of the E266K variant in the presence of the heterozygous AG genotype was higher in male than female groups. The homozygous AA genotype was a risk factor associated with asthma, for patients aged between 6 and 18 years OR 2.39, IC95% (1.04–5.49) p < 0.01. The mRNA expression of NOD1, but not NOD2, was enhanced in asthma patients compared to Controls. We noted a significant difference between asthmatics and healthy controls in NOD1 protein expression (asthma patients : 31.18 ± 10.9 pg/ml, Controls: 20.10 ± 2.58 pg/ml; p < 0.001).

Conclusions

The NOD1 rs2075820 variant was associated with a higher childhood asthma risk and the NOD1 expression at mRNA and protein levels was significantly increased in asthma patients.

Keywords

Childhood asthma NOD1/2 SNP mRNA PCR RFLP E266K 

Notes

Acknowledgements

This study was supported by the Tunisian Ministry of Higher Education and Scientific Research.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

408_2019_209_MOESM1_ESM.doc (44 kb)
Supplementary material 1 (DOC 44 KB)
408_2019_209_MOESM2_ESM.doc (70 kb)
Supplementary material 2 (DOC 69 KB)
408_2019_209_MOESM3_ESM.doc (42 kb)
Supplementary material 3 (DOC 41 KB)

References

  1. 1.
    Bijanzadeh M, Mahesh PA, Ramachandra NB (2011) An understanding of the genetic basis of asthma. Indian J Med Res 134:149–161Google Scholar
  2. 2.
    McGee HS, Edwan JH, Agrawal DK (2010) Flt3-L increases CD4 + CD25 + Foxp3 + ICOS + cells in the lungs of cockroach-sensitizedand challenged mice. Am J Respir Cell Mol Biol 42:331–340CrossRefGoogle Scholar
  3. 3.
    Girardin SE, Sansonetti PJ, Philpott DJ (2002) Intracellular vs extracellular recognition of pathogens-common concepts in mammals and flies. Trends Microbiol 10:193–199CrossRefGoogle Scholar
  4. 4.
    Inohara N, Nunez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3:371–382CrossRefGoogle Scholar
  5. 5.
    Athman R, Philpott D (2004) Innate immunity via toll-like receptors and nod proteins. Curr Opin Microbiol 7:25–32CrossRefGoogle Scholar
  6. 6.
    Inohara N, Nunez G (2003) Cell death and immunity: NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3:371–382CrossRefGoogle Scholar
  7. 7.
    Elinav E, Strowig T, Henao-Mejia J, Flavell RA (2011) Regulation of the antimicrobial response by NLR proteins. Immunity 34:665–679CrossRefGoogle Scholar
  8. 8.
    Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jéhanno M, Viala J et al (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587CrossRefGoogle Scholar
  9. 9.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872CrossRefGoogle Scholar
  10. 10.
    Laitinen T, Daly MJ, Rioux JD, Kauppi P, Laprise C, Petäys T et al (2001) A susceptibility locus for asthma-related traits on chromosome 7 revealed by genome-wide scan in a founder population. Nat Genet 28:87–91Google Scholar
  11. 11.
    Weidinger S, Klopp N, Rummler L, Wagenpfeil S, Novak N, Baurecht HJ et al (2005) Association of NOD1 polymorphisms with atopic eczema and related phenotypes. J Allergy Clin Immunol 116:177–184CrossRefGoogle Scholar
  12. 12.
    Hysi P, Kabesch M, Moffatt MF, Schedel M, Carr D, Zhang Y et al (2005) NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet 14:935–941CrossRefGoogle Scholar
  13. 13.
    McGovern DPB, Hysi P, Ahmad T, van Heel DA, Moffat MF, Carey A et al (2005) Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet 14:1245–1250CrossRefGoogle Scholar
  14. 14.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603CrossRefGoogle Scholar
  15. 15.
    Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276:4812–4818CrossRefGoogle Scholar
  16. 16.
    Kabesch M, Peters W, Carr D, Leupold W, Weiland SK, von Mutius E (2003) Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations. J Allergy Clin Immunol 111:813–817CrossRefGoogle Scholar
  17. 17.
    Onoyama S, Ihara K, Yamaguchi Y, Ikeda K, Yamaguchi K, Yamamura K et al (2012) Genetic susceptibility to Kawasaki disease: analysis of pattern recognition receptor genes. Hum Immunol 73:654–660CrossRefGoogle Scholar
  18. 18.
    Jüngst C, Stadlbauer V, Reichert MC, Zimmer V, Weber SN, Ofner-Ziegenfuß L et al (2017) NOD2 gene variants confer risk for secondary sclerosing cholangitis in critically ill patients. Sci Rep 7:7026CrossRefGoogle Scholar
  19. 19.
    Sales-Marques C, Cardoso CC, Alvarado-Arnez LE, Illaramendi X, Sales AM, Hacker MA et al (2017) Genetic polymorphisms of the IL6 and NOD2 genes are risk factors for inflammatory reactions in leprosy. PLoS Negl Trop Dis 11:e0005754CrossRefGoogle Scholar
  20. 20.
    Besnard V, Calender A, Bouvry D, Pacheco Y, Chapelon-Abric C, Jeny F et al (2018) G908R NOD2 variant in a family with sarcoidosis. Respir Res 19:44CrossRefGoogle Scholar
  21. 21.
    Chen Y, Salem M, Boyd M, Bornholdt J, Li Y, Coskun M et al (2017) Relation between NOD2 genotype and changes in innate signaling in Crohn’s disease on mRNA and miRNA levels. NPJ Genom Med 2:3CrossRefGoogle Scholar
  22. 22.
    Dinya T, Tornai T, Vitalis Z, Tornai I, Balogh B, Tornai D et al (2017) Functional polymorphisms of innate immunity receptors are not risk factors for the non-SBP type bacterial infections in cirrhosis. Liver Int.  https://doi.org/10.1111/liv.13664 Google Scholar
  23. 23.
    Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J, Almer S et al (2002) CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 70:845–857CrossRefGoogle Scholar
  24. 24.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606CrossRefGoogle Scholar
  25. 25.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215CrossRefGoogle Scholar
  26. 26.
    Bloch G, Toma DP, et Robinson GE (2001) Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J Biol Rhythms 16:444–456CrossRefGoogle Scholar
  27. 27.
    Reijmerink NE, Bottema RWB, Kerkhof M, Gerritsen J, Stelma FF et al (2010) TLR-related pathway analysis: novel gene–gene interactions in the development of asthma and atopy. Allergy 65:199–207CrossRefGoogle Scholar
  28. 28.
    Ege MJ, Strachan DP, Cookson WOCM, Moffatt MF, Gut I, Lathrop M et al (2011) Gene-environment interaction for childhood asthma and exposure to farming in Central Europe. J Allergy Clin Immunol 127:138–144CrossRefGoogle Scholar
  29. 29.
    Tanabe T, Ishige I, Suzuki Y, Aita Y, Furukawa A, Ishige Y et al (2006) Sarcoidosis and NOD1 variation with impaired recognition of intracellular Propionibacterium acnes. Biochim Biophys Acta 1762:794–801CrossRefGoogle Scholar
  30. 30.
    Mekki L, Zaouali H, Boubaker J, Karoui S, Fekih M,. Matri S et al (2005) CARD15/NOD2 in a Tunisian population with Crohn’s disease. Dig Dis Sci 50:130–135CrossRefGoogle Scholar
  31. 31.
    Feki S, Bouzid D, Abida O, Chtourou L, Elloumi N, Toumi A et al (2017) Genetic association and phenotypic correlation of TLR4 but not NOD2 variants with Tunisian inflammatory bowel disease. J Dig Dis 18:625–633CrossRefGoogle Scholar
  32. 32.
    Yamazaki K, Takazoe M, Tanaka T, Ichimori T, Nakamura Y (2002) Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. J Hum Genet 47:469–472CrossRefGoogle Scholar
  33. 33.
    Möckelmann N, von Schönfels W, Buch S, von Kampen O, Sipos B, Egberts JH et al (2009) Investigation of innate immunity genes CARD4, CARD8 and CARD15 as germline susceptibility factors for colorectal cancer. BMC Gastroenterol 9:79CrossRefGoogle Scholar
  34. 34.
    Tuncer S, Fiorillo MT, Sorrentino R (2014) The multifaceted nature of NLRP12. J Leukoc Biol 96:991–1000CrossRefGoogle Scholar
  35. 35.
    Molnar T, Hofner P, Nagy F, Lakatos PL, Fischer S, Lakatos L et al (2007) NOD1 gene E266K polymorphism is associated with disease susceptibility but not with disease phenotype or NOD2/CARD15 in Hungarian patients with Crohn’s disease. Dig Liver Dis 39:1064–1070CrossRefGoogle Scholar
  36. 36.
    Kharwar NK, Prasad KN, Paliwal VK, Modi DR (2016) Association of NOD1 and NOD2 polymorphisms with Guillain-Barré syndrome in Northern Indian population. J Neur Sci 363:57–62CrossRefGoogle Scholar
  37. 37.
    Brickey WJ, Alexis NE, Hernandez ML, Reed W, Ting JPY, Peden DB (2011) Sputum inflammatory cells from patients with allergic rhinitis and asthma have decreased inflammasome gene expression. J Allergy Clin Immunol 128:900–903CrossRefGoogle Scholar
  38. 38.
    Wong CK, Leung TF, Chu IMT, Dong J, Lam YYO, Lam CWK (2015) Aberrant expression of regulatory cytokine IL-35 and pattern recognition receptor NOD2 in patients with allergic asthma. Inflammation 38:348–360CrossRefGoogle Scholar
  39. 39.
    Hamzaoui K, Abid H, Berraies A, Ammar J, Hamzaoui A (2012) NOD2 is highly expressed in Behçet disease with pulmonary manifestations. J Inflam 9:3CrossRefGoogle Scholar
  40. 40.
    Franca RFO, Vieira SM, Talbot J, Peres RS, Pinto LG, Zamboni DS et al (2016) Expression and activity of NOD1 and NOD2/RIPK2 signalling in mononuclear cells from patients with rheumatoid arthritis. Scand J Rheumatol 45:8–12CrossRefGoogle Scholar
  41. 41.
    Bogefors J, Rydberg C, Uddman R, Fransson M, Mansson A, Benson M et al (2010) Nod1, Nod2 and Nalp3 receptors, new potential targets in treatment of allergic rhinitis? Allergy 65:1222–1226CrossRefGoogle Scholar
  42. 42.
    Kinose D, Ogawa E, Kudo M, Marumo S, Kiyokawa H, Hoshino Y et al (2016) Association of COPD exacerbation frequency with gene expression of pattern recognition receptors in inflammatory cells in induced sputum. Clin Respir J 10:11–21CrossRefGoogle Scholar
  43. 43.
    Kvarnhammar AM, Petterson T, Cardell LO (2011) NOD-like receptors and RIG-I-like receptors in human eosinophils: activation by NOD1 and NOD2 agonists. Immunology 134:314–325CrossRefGoogle Scholar
  44. 44.
    Wong CK, Hu S, Leung KML, Dong J, He L, Chu YJ et al (2013) NOD-like receptors mediated activation of eosinophils interacting with bronchial epithelial cells: a link between innate immunity and allergic asthma. Cell Mol Immunol 10:317–329CrossRefGoogle Scholar
  45. 45.
    Ait Yahia S, Azzaoui I, Everaere L, Vorng H, Chenivesse C, Marquillies P et al (2014) CCL17 production by dendritic cells is required for NOD1-mediated exacerbation of allergic asthma. Am J Respir Crit Care Med 189:899–908CrossRefGoogle Scholar
  46. 46.
    Shin JH, Kim SW, Park YS (2012) Role of NOD1-mediated signals in a mouse model of allergic rhinitis. Otolaryngol Head Neck Surg 147:1020–1026CrossRefGoogle Scholar
  47. 47.
    Mercier BC, Ventre E. Fogeron ML, Debaud AL, Tomkowiak M, Marvel J et al (2012) NOD1 Cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T Cells. PLoS ONE 7:e42170CrossRefGoogle Scholar
  48. 48.
    Park JH, Kim YG, Shaw M, Kanneganti TD, Fujimoto Y, Fukase K et al (2007) Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol 179:514–521CrossRefGoogle Scholar
  49. 49.
    Duan W, Mehta AK, Magalhaes JG, Ziegler SF, Dong C, Philpott DJ, et Croft M (2010) Innate signals from Nod2 block respiratory tolerance and program Th2 driven allergic inflammation. J Allergy Clin Immunol 126(6):1284–1293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Sciences Tunis, Tunis El Manar UniversityTunisTunisia
  2. 2.Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15Tunis El Manar UniversityTunisTunisia
  3. 3.Department of Respiratory DiseasesHospital A. MamiArianaTunisia
  4. 4.Unit Research Homeostasis and Cell dysfunctionMedicine Faculty of TunisTunisiaTunisia

Personalised recommendations