Advertisement

Lung

, Volume 197, Issue 1, pp 37–45 | Cite as

Identification of Phenotypes in People with COPD: Influence of Physical Activity, Sedentary Behaviour, Body Composition and Skeletal Muscle Strength

  • Rafaella F. Xavier
  • Ana Carolina A. C. Pereira
  • Aline C. Lopes
  • Vinícius Cavalheri
  • Regina M. C. Pinto
  • Alberto Cukier
  • Ercy M. C. Ramos
  • Celso R. F. CarvalhoEmail author
COPD

Abstract

Introduction

People with chronic obstructive pulmonary disease (COPD) present high prevalence of physical inactivity that leads to a negative effect on health-related quality of life (HRQoL). The present study investigated COPD phenotypes according to their levels of physical activity and sedentary behaviour, as well as body composition and skeletal muscle strength.

Methods

This is an observational and cross-sectional study. Anthropometric data and COPD clinical control were collected and all participants underwent assessments of lung function, HRQoL, dyspnoea, levels of physical activity and sedentary behaviour, body composition and skeletal muscle strength. Participants were classified using hierarchical cluster analysis. Age, dyspnoea and obstruction (ADO) index was used to determine prognosis and calculated for each cluster.

Results

One hundred and fifty-two participants were included. Three distinct phenotypes were identified. Participants in phenotype 1 were more physically active, less sedentary and had better body composition and lower ADO index (p < 0.0001 for all variables). Overall, participants in phenotypes 2 and 3 were less physically active, more sedentary having a higher ADO index. However, participants in phenotype 2 were older, whereas participants in phenotype 3 had worse HRQoL, clinical control and body composition. Lung function did not differ across the three phenotypes.

Conclusions

Our results show that physical activity, sedentary behaviour and body composition should be considered to determine phenotypes in people with COPD and are involved in the prognosis of the disease. Less sedentary patients have better prognosis while age, body composition and clinical control seems to differentiate physically inactive patients.

Keywords

Daily life physical activity Muscle mass Health-related quality of life Prognosis 

Notes

Funding

Funding was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo with Grant No. 2013/20676-9.

Compliance with Ethical Standards

Conflict of interest

The authors report having no real or perceived conflicts of interest.

References

  1. 1.
    GOLD (Global Initiative for Chronic Obstructive Lung Disease). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. GOLD. 2016Google Scholar
  2. 2.
    Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL et al (2010) Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med 182(5):598–604CrossRefGoogle Scholar
  3. 3.
    Rice JP, Saccone NL, Rasmussen E (2001) Definition of the phenotypes. Adv Genet 42:69–76CrossRefGoogle Scholar
  4. 4.
    Langel P, Halpin DM, O’Donnell D, MacNee W (2016) Diagnosis, assessment, and phenotyping of COPD: beyond FEV1. Int J Chron Obstruct Pulmon Dis 11:3–12Google Scholar
  5. 5.
    Garcia-Aymerich J, Agustí A, Barberà JA, Belda J, Farrero E, Ferrer A, Ferrer J et al (2009) Phenotypic heterogeneity of chronic obstructive pulmonary disease. Arch Bronconeumol 45(3):129–138CrossRefGoogle Scholar
  6. 6.
    Burgel PR, Paillasseur JL, Caillaud D, Tillie-Leblond I, Chanez P, Escamilla R et al (2010) Clinical COPD phenotypes: a novel approach using principal component and cluster analyses. Eur Respir J 36(3):531–539CrossRefGoogle Scholar
  7. 7.
    Burgel PR, Paillasseur JL, Peene B, Dusser D, Roche N, Coolen J et al (2012) Two distinct chronic obstructive pulmonary disease (COPD) phenotypes are associated with high risk of mortality. PLoS ONE 7(12):e51048CrossRefGoogle Scholar
  8. 8.
    Agustí A, Edwards LD, Rennard SI, MacNee W, Tal-Singer R, Miller BE et al (2012) Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 7(5):e37483CrossRefGoogle Scholar
  9. 9.
    Tse HN, Tseng CZ, Wong KY, Ng LY, Lai TL, Yee KS (2016) Frequent Exacerbator: the phenotype at risk of depressive symptoms in geriatric COPD patients. Lung 194(4):665–673CrossRefGoogle Scholar
  10. 10.
    Marquis K, Debigare R, Lacasse Y, LeBlanc P, Jobin J, Carrier G (2002) et.al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(6):809–813CrossRefGoogle Scholar
  11. 11.
    Koblizek V, Milenkovic B, Barczyk A, Tkacova R, Somfay A, Zykov K et al (2017) Phenotypes of COPD patients with a smoking history in Central and Eastern Europe: the POPE Study. Eur Respir J 11(5):1601446CrossRefGoogle Scholar
  12. 12.
    Patel MS, Mohan D, Andersson YM, Baz M, Samantha Kon SC, Canavan JL et al (2014) Phenotypic characteristics associated with reduced short physical performance battery score in COPD. Chest 145(5):1016–1024CrossRefGoogle Scholar
  13. 13.
    Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359CrossRefGoogle Scholar
  14. 14.
    Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC et al (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 116(9):1094–1105CrossRefGoogle Scholar
  15. 15.
    Hill K, Gardiner PA, Cavalheri V, Jenkins SC, Healy GN (2015) Physical activity and sedentary behavior: applying lessons to chronic obstructive pulmonary disease. Intern Med J 45(5):474–482CrossRefGoogle Scholar
  16. 16.
    Cavalheri V, Straker L, Gucciardi DF, Gardiner PA, Hill K (2016 Apr) Changing physical activity and sedentary behaviour in people with COPD. Respirology 21(3):419–426CrossRefGoogle Scholar
  17. 17.
    Bourbeau J (2009) Activities of life: the COPD patient. COPD 6(3):192–200CrossRefGoogle Scholar
  18. 18.
    Marshall SJ, Jones DA, Ainsworth BE, Reis JP, Levy SS, Macera CA (2007) Race/ethnicity, social class, and leisure-time physical inactivity. Med Sci Sports Exerc 39(1):44–51CrossRefGoogle Scholar
  19. 19.
    Parks SE, Housemann RA, Brownson RC (2003) Differential correlates of physical activity in urban and rural adults of various socioeconomic backgrounds in the United States. J Epidemiol Commun Health 57(1):29–35CrossRefGoogle Scholar
  20. 20.
    Pitta F, Breyer MK, Hernandes NA, Teixeira D, Sant’Anna TJ, Fontana AD et al (2009) Comparison of daily physical activity between COPD patients from Central Europe and South America. Respir Med 103(3):421–426CrossRefGoogle Scholar
  21. 21.
    Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F et al (2005) Standardisation of the measurement of lung volumes. Eur Respir J 26(3):511–522CrossRefGoogle Scholar
  22. 22.
    Pereira CA, Sato T, Rodrigues SC (2007) New reference values for forced spirometry in white adults in Brazil. Braz J Pulmonol 33(4):397–406Google Scholar
  23. 23.
    Kovelis D, Segretti NO, Probst VS, Lareau SC, Brunetto AF, Pitta F (2008) Validation of the Modified Pulmonary Functional Status and Dyspnea Questionnaire and the Medical Research Council scale for use in Brazilian patients with chronic obstructive pulmonary disease. J Bras Pneumol 34(12):1008–1018CrossRefGoogle Scholar
  24. 24.
    GOLD (Global initiative for chronic Obstructive Lung Disease). Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. GOLD; 2013Google Scholar
  25. 25.
    Williams JE, Singh SJ, Sewell L, Guyatt GH, Morgan MD (2001) Development of a self-reported Chronic Respiratory Questionnaire (CRQ-SR). Thorax 56(12):954–959CrossRefGoogle Scholar
  26. 26.
    Moreira GL, Pitta FO, Ramos D, Nascimento CC, Barzon D, Kovelis D et al (2009) Versão em português do Chronic Respiratory Questionnaire: estudo da validade e reprodutibilidade. J Bras Pneumol 35(8):737–744CrossRefGoogle Scholar
  27. 27.
    Van der Molen T, Willemse BW, Schokker S, ten Hacken NH, Postma DS, Juniper EF et al (2003) Development, validity and responsiveness of the clinical COPD questionnaire. Health Qual Life Outcomes 28:1–13Google Scholar
  28. 28.
    Silva LCS. Validação do questionário clínico de doença pulmonar obstrutiva crônica (CCQ) para a língua portuguesa. Dissertação de mestrado 2012; 1–98Google Scholar
  29. 29.
    Van Remoortel H, Raste Y, Louvaris Z, Giavedoni S, Burtin C, Langer D et al (2012) Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PLoS ONE 7:e39198CrossRefGoogle Scholar
  30. 30.
    Hogrel J-Y, Payan C, Ollivier G, Tanant V, Attarian S, Couillandre A et al (2007) Development of a french isometric strength normative database for adults using quantitative muscle testing. Arch Phys Med Rehabil 88(10):1289–1297CrossRefGoogle Scholar
  31. 31.
    Lohman TG, Roche AF, Martorell R. (1988) Anthropometric standardization reference manual. Human Kinetics, ChampaignGoogle Scholar
  32. 32.
    Gibson AL, Holmes JC, Desautels RL, Edmonds L, Nuudi L (2008) Ability of new octapolar bioimpedance spectroscopy analyzers to predict 4-component-model percentage body fat in Hispanic, black, and white adults. Am J Clin Nutr 87(2):332–338CrossRefGoogle Scholar
  33. 33.
    Cunningham JJ (1991) Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation. Am J Clin Nutr 54(6):963–969CrossRefGoogle Scholar
  34. 34.
    Riet G. Antó JM. Agustí AG et al (2009) Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease: the updated BODE index and the ADO index. Lancet 374(9691):704–1152 terCrossRefGoogle Scholar
  35. 35.
    Clatworthy J, Hankins M, Buick D, Weinman J, Horne J (2007) Cluster analysis in illness perceptions research: a Monte Carlo study to identify the most appropriate method. Psychol Health 22(2):123–142CrossRefGoogle Scholar
  36. 36.
    Harrison SL, Robertson N, Graham CD, Williams J, Steiner MC, Morgan MD et al (2014) Can we identify patients with different illness schema following an acute exacerbation of COPD: a cluster analysis. Respir Med 108(2):319–328CrossRefGoogle Scholar
  37. 37.
    Watz H, Pitta F, Carolyn L, Garcia-Aymerich J, ZuWallack R, Troosters T et al (2014) An official European Respiratory Society statement on physical activity in COPD. Eur Respir J 44(6):1521–1537CrossRefGoogle Scholar
  38. 38.
    Mesquita R, Spina G, Pitta F, Donaire-Gonzalez D, Deering BM, Patel MS et al (2017) Physical activity patterns and clusters in 1001 patients with COPD. Chronic Respiratory Disease 14(3):256–269CrossRefGoogle Scholar
  39. 39.
    Yoshimura K, Sato S, Muro S, Yamada M, Hasegawa K, Kiyokawa H et al (2018) Interdependence of physical inactivity, loss of muscle mass and low dietary intake: Extrapulmonary manifestations in older chronic obstructive pulmonary disease patients. Geriatr Gerontol Int 18(1):88–94CrossRefGoogle Scholar
  40. 40.
    Mantoani LC, Dell’Era S, MacNee W, Rabinovich RA (2017) Physical activity in patients with COPD: the impact of comorbidities. Expert Rev Respir Med 11(9):685–698CrossRefGoogle Scholar
  41. 41.
    Duenas-Espín I, Demeyer H, Gimeno-Santos H, Polkey MI, Hopkinson NS, Rabinovich RA et al (2016) Depression symptoms reduce physical activity in COPD patients: a prospective multicenter study. Int J Chron Obstruct Pulmon Dis 10(11):1287–1295CrossRefGoogle Scholar
  42. 42.
    Depew Z, Novotny P, Benzo R (2012) How many steps are enough to avoid severe physical inactivity in patients with chronic obstructive pulmonary disease? Respirology 17(6):1026–1027CrossRefGoogle Scholar
  43. 43.
    Demeyer H, Burtin C, Hornikx M, Camillo CA, Van Remoortel H, Langer D et al (2016) The minimal important difference in physical activity in patients with COPD. PLos One 11(4):1–11CrossRefGoogle Scholar
  44. 44.
    O’Donovan G, Blazevich AJ, Boreham C, Cooper AR, Crank H, Ekelund U et al (2010) The ABC of Physical Activity for Health: a consensus statement from the British Association of Sport and Exercise Sciences. J Sports Sci 28(6):573–591CrossRefGoogle Scholar
  45. 45.
    Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnefried W, Bandera EV et al (2012) American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin 62(1):30–67CrossRefGoogle Scholar
  46. 46.
    Waschki B, Kirsten AM, Holz O, Mueller KC, Schaper M, Sack AL et al (2015) Disease progression and changes in physical activity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 192(3):295–306CrossRefGoogle Scholar
  47. 47.
    Esteban C, Arostegui I, Aburto M, Moraza J, Quintana JM, Aizpiri S et al (2014) Influence of changes in physical activity on frequency of hospitalization in chronic obstructive pulmonary disease. Respirology 19(3):330–338CrossRefGoogle Scholar
  48. 48.
    Miravitlles M, Cantoni J, Naberan K (2014) Factors associated with a low level of physical activity in patients with Chronic Obstructive Pulmonary Disease. Lung 192(2):259–265CrossRefGoogle Scholar
  49. 49.
    Gurgun A, Deniz S, Argin M, Karapolat H et al (2013) Effects of nutritional supplementation combined with conventional pulmonary rehabilitation in muscle-wasted chronic obstructive pulmonary disease: A prospective, randomized and controlled study. Respirology 18(3):495–500CrossRefGoogle Scholar
  50. 50.
    Monteiro F, Camillo CA, Vitorasso R, Sant’Anna T, Hernandes NA, Probst VS et al (2012) Obesity and physical activity in the daily life of patients with COPD. Lung 190(4):403–410CrossRefGoogle Scholar
  51. 51.
    Vozoris NT, O’Donnell DE (2012) Prevalence, risk factors, activity limitation and health care utilization of an obese, population-based sample with chronic obstructive pulmonary disease. Can Respir J 19(3):18–24CrossRefGoogle Scholar
  52. 52.
    Centers for disease control and prevention (CDC) (2003) Prevalence of physical activity, including lifestyle activities among adults United States, 2000–2001. MMWR Morb Mortal Wkly Rep 15(52):764–769Google Scholar
  53. 53.
    Tsukino M, Nishimura K, Ikeda A, Koyama H, Mishima M, Izumi T et al (1996) Physiologic factors that determine the health-related quality of life in patients with COPD. Chest 110(4):896–903CrossRefGoogle Scholar
  54. 54.
    Laudański K, Nowak Z, Niemczyk S (2013) Age-related differences in the quality of life in end-stage renal disease in patients enrolled in hemodialysis or continuous peritoneal dialysis. Med Sci Monit 19:378–385CrossRefGoogle Scholar
  55. 55.
    Jones PW (2001) Health status measurement in chronic obstructive pulmonary disease. Thorax 56(11):880–887CrossRefGoogle Scholar
  56. 56.
    Katajisto M, Kupiainen H, Rantanen P, Lindqvist A, Kilpeläinen M, Tikkanen H et al (2012) Physical inactivity in COPD and increased patient perception of dyspnea. Int J Chron Obstruct Pulmon Dis 7:743–755CrossRefGoogle Scholar
  57. 57.
    Watz H, Waschki B, Meyer T, Magnussen H (2009) Physical activity in patients with COPD. Eur Respir J 33(2):262–272CrossRefGoogle Scholar
  58. 58.
    Chen C, Wang L, Ou C, Lee C, Lin C, Hsiue T (2014) Using cluster analysis to identify phenotypes and validation of mortality in men with COPD. Lung 192(6):889–896CrossRefGoogle Scholar
  59. 59.
    Lopes A, Xavier R, Caporali A, Stelmach R, Fernandes F, Harrison S, Carvalho C (2018) Identifying COPD patients at risk for worse symptoms, HRQoL, and self-efficacy: a cluster analysis. Chronic Illness 1:1742395317753883Google Scholar
  60. 60.
    Oga T, Tsukino M, Hajiro T, Ikeda A, Nishimura K (2012) Analysis of longitudinal changes in dyspnea of patients with chronic obstructive pulmonary disease: an observational study. Respir Res 13(1):85CrossRefGoogle Scholar
  61. 61.
    Yu T, Ter Riet G, Puhan MA, Frei A et al (2017) Physical activity and risk of comorbidities in patients with chronic obstructive pulmonary disease: a cohort study. NPJ Prim Care Respir Med 18(1):27 36.Google Scholar
  62. 62.
    Carolan BJ, Sutherland R (2013) Clinical phenotypes of chronic obstructive pulmonary disease and asthma:Recent advances. JAllergy Clin Immunol 131(3):627–634CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rafaella F. Xavier
    • 1
  • Ana Carolina A. C. Pereira
    • 1
  • Aline C. Lopes
    • 1
  • Vinícius Cavalheri
    • 2
    • 3
  • Regina M. C. Pinto
    • 4
  • Alberto Cukier
    • 4
  • Ercy M. C. Ramos
    • 5
  • Celso R. F. Carvalho
    • 1
    • 6
    Email author
  1. 1.Department of Physical Therapy, School of MedicineUniversity of Sao PauloSao PauloBrazil
  2. 2.School of Physiotherapy and Exercise ScienceCurtin UniversityPerthAustralia
  3. 3.Institute for Respiratory HealthSir Charles Gairdner HospitalNedlandsAustralia
  4. 4.Pulmonary Division, Heart Institute (InCor), Clinics Hospital, Medical SchoolUniversity of Sao PauloSao PauloBrazil
  5. 5.Department of Physical TherapyState University of Sao PauloSao PauloBrazil
  6. 6.Department of Medicine, School of MedicineUniversity of Sao PauloSao PauloBrazil

Personalised recommendations