Skip to main content

Advertisement

Log in

Cells and Culture Systems Used to Model the Small Airway Epithelium

  • Published:
Lung Aims and scope Submit manuscript

Abstract

The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air–liquid interface. However, these 2-dimensional cultures lack a three dimension—a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cardoso WV, Whitsett JA (2008) Resident cellular components of the lung: developmental aspects. Proc Am Thorac Soc 5(7):767–771

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guillot L et al (2013) Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol 45(11):2568–2573

    Article  CAS  PubMed  Google Scholar 

  3. Strengert M, Knaus UG (2011) Analysis of epithelial barrier integrity in polarized lung epithelial cells. Methods Mol Biol 763:195–206

    Article  CAS  PubMed  Google Scholar 

  4. Rezaee F, Georas SN (2014) Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol 50(5):857–869

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hollenhorst MI, Richter K, Fronius M (2011) Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011:174306

    Article  PubMed  PubMed Central  Google Scholar 

  6. Samara KD et al (2012) Expression profiles of toll-like receptors in non-small cell lung cancer and idiopathic pulmonary fibrosis. Int J Oncol 40(5):1397–1404

    CAS  PubMed  Google Scholar 

  7. Jeyaseelan S et al (2005) Induction of CXCL5 during inflammation in the rodent lung involves activation of alveolar epithelium. Am J Respir Cell Mol Biol 32(6):531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhowmick R et al (2013) Systemic disease during Streptococcus pneumoniae acute lung infection requires 12-lipoxygenase-dependent inflammation. J Immunol 191(10):5115–5123

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka J et al (2013) Preventive effect of irbesartan on bleomycin-induced lung injury in mice. Respir Investig 51(2):76–83

    Article  PubMed  Google Scholar 

  10. Mason KM et al (2006) The non-typeable Haemophilus influenzae Sap transporter provides a mechanism of antimicrobial peptide resistance and SapD-dependent potassium acquisition. Mol Microbiol 62(5):1357–1372

    Article  CAS  PubMed  Google Scholar 

  11. Nicholas B et al (2015) A novel lung explant model for the ex vivo study of efficacy and mechanisms of anti-influenza drugs. J Immunol 194(12):6144–6154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davis AS et al (2015) Validation of normal human bronchial epithelial cells as a model for influenza A infections in human distal trachea. J Histochem Cytochem 63(5):312–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gerlach RL et al (2013) Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells. PLoS ONE 8(11):e78912

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chan RW et al (2010) Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation. PLoS ONE 5(1):e8713

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stewart CE et al (2012) Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J Allergy (Cairo) 2012:943982

    Google Scholar 

  16. Choe MM, Sporn PH, Swartz MA (2003) An in vitro airway wall model of remodeling. Am J Physiol Lung Cell Mol Physiol 285(2):L427–L433

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal AR, Mih J, George SC (2003) Expression of matrix proteins in an in vitro model of airway remodeling in asthma. Allergy Asthma Proc 24(1):35–42

    CAS  PubMed  Google Scholar 

  18. Hall-Stoodley L et al (2006) Mycobacterium tuberculosis binding to human surfactant proteins A and D, fibronectin, and small airway epithelial cells under shear conditions. Infect Immun 74(6):3587–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sisler JD et al (2015) Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model. Nanotoxicology 9:769–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Escaffre O et al (2013) Henipavirus pathogenesis in human respiratory epithelial cells. J Virol 87(6):3284–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Avadhanula V et al (2006) Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J Virol 80(4):1629–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kode A, Yang SR, Rahman I (2006) Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells. Respir Res 7:132

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dakhama A et al (2003) Induction of regulated upon activation, normal T cells expressed and secreted (RANTES) and transforming growth factor-beta 1 in airway epithelial cells by Mycoplasma pneumoniae. Am J Respir Cell Mol Biol 29(3 Pt 1):344–351

    Article  CAS  PubMed  Google Scholar 

  24. Tiriveedhi V et al (2014) Role of defensins in the pathogenesis of chronic lung allograft rejection. Hum Immunol 75(4):370–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Homma T et al (2015) Aspergillus fumigatus activates PAR-2 and skews toward a Th2 bias in airway epithelial cells. Am J Respir Cell Mol Biol 54:60–70

    Article  Google Scholar 

  26. Londino JD et al (2015) Influenza virus M2 targets cystic fibrosis transmembrane conductance regulator for lysosomal degradation during viral infection. FASEB J 29(7):2712–2725

    Article  CAS  PubMed  Google Scholar 

  27. Hurley BP, Williams NL, McCormick BA (2006) Involvement of phospholipase A2 in Pseudomonas aeruginosa-mediated PMN transepithelial migration. Am J Physiol Lung Cell Mol Physiol 290(4):L703–L709

    Article  CAS  PubMed  Google Scholar 

  28. Hurley BP et al (2004) Polymorphonuclear cell transmigration induced by Pseudomonas aeruginosa requires the eicosanoid hepoxilin A3. J Immunol 173(9):5712–5720

    Article  CAS  PubMed  Google Scholar 

  29. Aufderheide M et al (2013) The CULTEX RFS: a comprehensive technical approach for the in vitro exposure of airway epithelial cells to the particulate matter at the air–liquid interface. Biomed Res Int 2013:734137

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carterson AJ et al (2005) A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infect Immun 73(2):1129–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomez-Casal R et al (2013) Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial–mesenchymal transition phenotypes. Mol Cancer 12(1):94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herzog F et al (2013) Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Part Fibre Toxicol 10:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaza SK, McClean S, Callaghan M (2011) IL-8 released from human lung epithelial cells induced by cystic fibrosis pathogens Burkholderia cepacia complex affects the growth and intracellular survival of bacteria. Int J Med Microbiol 301(1):26–33

    Article  CAS  PubMed  Google Scholar 

  34. Persoz C et al (2012) Inflammatory response modulation of airway epithelial cells exposed to formaldehyde. Toxicol Lett 211(2):159–163

    Article  CAS  PubMed  Google Scholar 

  35. Barhoumi R et al (2014) Effects of fatty acids on benzo[a]pyrene uptake and metabolism in human lung adenocarcinoma A549 cells. PLoS One 9(3):e90908

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chothia C, Jones EY (1997) The molecular structure of cell adhesion molecules. Annu Rev Biochem 66:823–862

    Article  CAS  PubMed  Google Scholar 

  37. Yan X et al (2013) Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncol Rep 30(6):2733–2740

    CAS  PubMed  Google Scholar 

  38. Kreft ME et al (2015) The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. Eur J Pharm Sci 69:1–9

    Article  CAS  PubMed  Google Scholar 

  39. Kreda SM et al (2007) Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. J Physiol 584(Pt 1):245–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fiegel J et al (2003) Large porous particle impingement on lung epithelial cell monolayers—toward improved particle characterization in the lung. Pharm Res 20(5):788–796

    Article  CAS  PubMed  Google Scholar 

  41. Harcourt JL et al (2011) Evaluation of the Calu-3 cell line as a model of in vitro respiratory syncytial virus infection. J Virol Methods 174(1–2):144–149

    Article  CAS  PubMed  Google Scholar 

  42. Garcia-Canton C et al (2013) Metabolic characterization of cell systems used in in vitro toxicology testing: lung cell system BEAS-2B as a working example. Toxicol In Vitro 27(6):1719–1727

    Article  CAS  PubMed  Google Scholar 

  43. Ghio AJ et al (2013) Growth of human bronchial epithelial cells at an air–liquid interface alters the response to particle exposure. Part Fibre Toxicol 10:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Schilfgaarde M et al (1995) Paracytosis of Haemophilus influenzae through cell layers of NCI-H292 lung epithelial cells. Infect Immun 63(12):4729–4737

    PubMed  PubMed Central  Google Scholar 

  45. Janmaat ML et al (2006) Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or phosphatidyl inositol-3 kinase pathways in non-small cell lung cancer cells. Int J Cancer 118(1):209–214

    Article  CAS  PubMed  Google Scholar 

  46. Vroling AB et al (2007) Allergen induced gene expression of airway epithelial cells shows a possible role for TNF-alpha. Allergy 62(11):1310–1319

    Article  CAS  PubMed  Google Scholar 

  47. Winton HL et al (1998) Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. Clin Exp Allergy 28(10):1273–1285

    Article  CAS  PubMed  Google Scholar 

  48. Chen YH et al (2015) Methadone enhances human influenza A virus replication. Addict Biol. doi:10.1111/adb.12305

  49. Newland N, Richter A (2008) Agents associated with lung inflammation induce similar responses in NCI-H292 lung epithelial cells. Toxicol In Vitro 22(7):1782–1788

    Article  CAS  PubMed  Google Scholar 

  50. Chen AI et al (2014) Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Pathog 10(10):e1004480

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen F et al (2015) Transcriptome profiles of human lung epithelial cells A549 interacting with Aspergillus fumigatus by RNA-Seq. PLoS One 10(8):e0135720

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fulcher ML et al (2009) Novel human bronchial epithelial cell lines for cystic fibrosis research. Am J Physiol Lung Cell Mol Physiol 296(1):L82–L91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berman R et al (2014) MUC18 differentially regulates pro-inflammatory and anti-viral responses in human airway epithelial cells. J Clin Cell Immunol 5(5):257–265

  54. Frieke Kuper C et al (2015) Toxicity assessment of aggregated/agglomerated cerium oxide nanoparticles in an in vitro 3D airway model: the influence of mucociliary clearance. Toxicol In Vitro 29(2):389–397

    Article  CAS  PubMed  Google Scholar 

  55. Kastner PE et al (2013) A dynamic system for single and repeated exposure of airway epithelial cells to gaseous pollutants. Toxicol In Vitro 27(2):632–640

    Article  CAS  PubMed  Google Scholar 

  56. Jyonouchi H et al (1998) The effects of hyperoxic injury and antioxidant vitamins on death and proliferation of human small airway epithelial cells. Am J Respir Cell Mol Biol 19(3):426–436

    Article  CAS  PubMed  Google Scholar 

  57. Forbes B, Ehrhardt C (2005) Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 60(2):193–205

    Article  CAS  PubMed  Google Scholar 

  58. Saatian B et al (2013) Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers 1(2):e24333

    Article  PubMed  PubMed Central  Google Scholar 

  59. Coakley RD et al (2003) Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci USA 100(26):16083–16088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rusznak C et al (2000) Effect of cigarette smoke on the permeability and IL-1beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 23(4):530–536

    Article  CAS  PubMed  Google Scholar 

  61. Hao Y et al (2012) Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2. Cell Microbiol 14(3):401–415

    Article  CAS  PubMed  Google Scholar 

  62. Verriere V et al (2012) Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia. PLoS One 7(5):e37746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baines KJ et al (2015) Airway beta-defensin-1 protein is elevated in COPD and severe asthma. Mediators Inflamm 2015:407271

    Article  PubMed  PubMed Central  Google Scholar 

  64. Panas A et al (2014) Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure. Beilstein J Nanotechnol 5:1590–1602

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tapparel C et al (2013) Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro. Virology 446(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  66. David J, Sayer NM, Sarkar-Tyson M (2014) The use of a three-dimensional cell culture model to investigate host-pathogen interactions of Francisella tularensis in human lung epithelial cells. Microbes Infect 16(9):735–745

    Article  PubMed  Google Scholar 

  67. Mathis C et al (2013) Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air–liquid interface resemble bronchial epithelium from human smokers. Am J Physiol Lung Cell Mol Physiol 304(7):L489–L503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Steiner S et al (2012) Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure. Toxicol Lett 214(2):218–225

    Article  CAS  PubMed  Google Scholar 

  69. Thaikoottathil JV et al (2009) Cigarette smoke extract reduces VEGF in primary human airway epithelial cells. Eur Respir J 33(4):835–843

    Article  CAS  PubMed  Google Scholar 

  70. Muckter H et al (1998) A novel apparatus for the exposure of cultured cells to volatile agents. J Pharmacol Toxicol Methods 40(2):63–69

    Article  CAS  PubMed  Google Scholar 

  71. Lenz AG et al (2014) Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured in air–liquid interface conditions. Am J Respir Cell Mol Biol 51(4):526–535

    Article  PubMed  Google Scholar 

  72. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845

    Article  CAS  PubMed  Google Scholar 

  73. Liu FF et al (2013) Hanging drop: an in vitro air toxic exposure model using human lung cells in 2D and 3D structures. J Hazard Mater 261:701–710

    Article  CAS  PubMed  Google Scholar 

  74. Hammond TG, Hammond JM (2001) Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281(1):F12–F25

    CAS  PubMed  Google Scholar 

  75. Huang S et al (2013) Potential of in vitro reconstituted 3D human airway epithelia (MucilAir) to assess respiratory sensitizers. Toxicol In Vitro 27(3):1151–1156

    Article  CAS  PubMed  Google Scholar 

  76. Wu X et al (2011) Human bronchial epithelial cells differentiate to 3D glandular acini on basement membrane matrix. Am J Respir Cell Mol Biol 44(6):914–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wheelock MJ, Johnson KR (2003) Cadherin-mediated cellular signaling. Curr Opin Cell Biol 15(5):509–514

    Article  CAS  PubMed  Google Scholar 

  78. Berger JT et al (1999) Respiratory carcinoma cell lines. MUC genes and glycoconjugates. Am J Respir Cell Mol Biol 20(3):500–510

    Article  CAS  PubMed  Google Scholar 

  79. Kleinman HK, Philp D, Hoffman MP (2003) Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 14(5):526–532

    Article  CAS  PubMed  Google Scholar 

  80. Ding P et al (2014) Transmigration and phagocytosis of macrophages in an airway infection model using four-dimensional techniques. Am J Respir Cell Mol Biol 51(1):1–10

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Gappa-Fahlenkamp.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmick, R., Gappa-Fahlenkamp, H. Cells and Culture Systems Used to Model the Small Airway Epithelium. Lung 194, 419–428 (2016). https://doi.org/10.1007/s00408-016-9875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9875-2

Keywords

Navigation