Advertisement

Lung

, Volume 194, Issue 3, pp 419–428 | Cite as

Cells and Culture Systems Used to Model the Small Airway Epithelium

  • Rudra Bhowmick
  • Heather Gappa-Fahlenkamp
Article

Abstract

The pulmonary epithelium is divided into upper, lower, and alveolar (or small) airway epithelia and acts as the mechanical and immunological barrier between the external environment and the underlying submucosa. Of these, the small airway epithelium is the principal area of gas exchange and has high immunological activity, making it a major area of cell biology, immunology, and pharmaceutical research. As animal models do not faithfully represent the human pulmonary system and ex vivo human lung samples have reliability and availability issues, cell lines, and primary cells are widely used as small airway epithelial models. In vitro, these cells are mostly cultured as monolayers (2-dimensional cultures), either media submerged or at air–liquid interface. However, these 2-dimensional cultures lack a three dimension—a scaffolding extracellular matrix, which establishes the intercellular network in the in vivo airway epithelium. Therefore, 3-dimensional cell culture is currently a major area of development, where cells are cultured in a matrix or are cultured in a manner that they develop ECM-like scaffolds between them, thus mimicking the in vivo phenotype more faithfully. This review focuses on the commonly used small airway epithelial cells, their 2-dimensional and 3-dimensional culture techniques, and their comparative phenotype when cultured under these systems.

Keywords

Small airway epithelium 3-Dimensional culture system 2-Dimensional culture system 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cardoso WV, Whitsett JA (2008) Resident cellular components of the lung: developmental aspects. Proc Am Thorac Soc 5(7):767–771CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Guillot L et al (2013) Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol 45(11):2568–2573CrossRefPubMedGoogle Scholar
  3. 3.
    Strengert M, Knaus UG (2011) Analysis of epithelial barrier integrity in polarized lung epithelial cells. Methods Mol Biol 763:195–206CrossRefPubMedGoogle Scholar
  4. 4.
    Rezaee F, Georas SN (2014) Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol 50(5):857–869CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hollenhorst MI, Richter K, Fronius M (2011) Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011:174306CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Samara KD et al (2012) Expression profiles of toll-like receptors in non-small cell lung cancer and idiopathic pulmonary fibrosis. Int J Oncol 40(5):1397–1404PubMedGoogle Scholar
  7. 7.
    Jeyaseelan S et al (2005) Induction of CXCL5 during inflammation in the rodent lung involves activation of alveolar epithelium. Am J Respir Cell Mol Biol 32(6):531–539CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bhowmick R et al (2013) Systemic disease during Streptococcus pneumoniae acute lung infection requires 12-lipoxygenase-dependent inflammation. J Immunol 191(10):5115–5123CrossRefPubMedGoogle Scholar
  9. 9.
    Tanaka J et al (2013) Preventive effect of irbesartan on bleomycin-induced lung injury in mice. Respir Investig 51(2):76–83CrossRefPubMedGoogle Scholar
  10. 10.
    Mason KM et al (2006) The non-typeable Haemophilus influenzae Sap transporter provides a mechanism of antimicrobial peptide resistance and SapD-dependent potassium acquisition. Mol Microbiol 62(5):1357–1372CrossRefPubMedGoogle Scholar
  11. 11.
    Nicholas B et al (2015) A novel lung explant model for the ex vivo study of efficacy and mechanisms of anti-influenza drugs. J Immunol 194(12):6144–6154CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Davis AS et al (2015) Validation of normal human bronchial epithelial cells as a model for influenza A infections in human distal trachea. J Histochem Cytochem 63(5):312–328CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gerlach RL et al (2013) Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells. PLoS ONE 8(11):e78912CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chan RW et al (2010) Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation. PLoS ONE 5(1):e8713CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Stewart CE et al (2012) Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J Allergy (Cairo) 2012:943982Google Scholar
  16. 16.
    Choe MM, Sporn PH, Swartz MA (2003) An in vitro airway wall model of remodeling. Am J Physiol Lung Cell Mol Physiol 285(2):L427–L433CrossRefPubMedGoogle Scholar
  17. 17.
    Agarwal AR, Mih J, George SC (2003) Expression of matrix proteins in an in vitro model of airway remodeling in asthma. Allergy Asthma Proc 24(1):35–42PubMedGoogle Scholar
  18. 18.
    Hall-Stoodley L et al (2006) Mycobacterium tuberculosis binding to human surfactant proteins A and D, fibronectin, and small airway epithelial cells under shear conditions. Infect Immun 74(6):3587–3596CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sisler JD et al (2015) Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model. Nanotoxicology 9:769–779CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Escaffre O et al (2013) Henipavirus pathogenesis in human respiratory epithelial cells. J Virol 87(6):3284–3294CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Avadhanula V et al (2006) Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J Virol 80(4):1629–1636CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kode A, Yang SR, Rahman I (2006) Differential effects of cigarette smoke on oxidative stress and proinflammatory cytokine release in primary human airway epithelial cells and in a variety of transformed alveolar epithelial cells. Respir Res 7:132CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dakhama A et al (2003) Induction of regulated upon activation, normal T cells expressed and secreted (RANTES) and transforming growth factor-beta 1 in airway epithelial cells by Mycoplasma pneumoniae. Am J Respir Cell Mol Biol 29(3 Pt 1):344–351CrossRefPubMedGoogle Scholar
  24. 24.
    Tiriveedhi V et al (2014) Role of defensins in the pathogenesis of chronic lung allograft rejection. Hum Immunol 75(4):370–377CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Homma T et al (2015) Aspergillus fumigatus activates PAR-2 and skews toward a Th2 bias in airway epithelial cells. Am J Respir Cell Mol Biol 54:60–70CrossRefGoogle Scholar
  26. 26.
    Londino JD et al (2015) Influenza virus M2 targets cystic fibrosis transmembrane conductance regulator for lysosomal degradation during viral infection. FASEB J 29(7):2712–2725CrossRefPubMedGoogle Scholar
  27. 27.
    Hurley BP, Williams NL, McCormick BA (2006) Involvement of phospholipase A2 in Pseudomonas aeruginosa-mediated PMN transepithelial migration. Am J Physiol Lung Cell Mol Physiol 290(4):L703–L709CrossRefPubMedGoogle Scholar
  28. 28.
    Hurley BP et al (2004) Polymorphonuclear cell transmigration induced by Pseudomonas aeruginosa requires the eicosanoid hepoxilin A3. J Immunol 173(9):5712–5720CrossRefPubMedGoogle Scholar
  29. 29.
    Aufderheide M et al (2013) The CULTEX RFS: a comprehensive technical approach for the in vitro exposure of airway epithelial cells to the particulate matter at the air–liquid interface. Biomed Res Int 2013:734137CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Carterson AJ et al (2005) A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Infect Immun 73(2):1129–1140CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gomez-Casal R et al (2013) Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial–mesenchymal transition phenotypes. Mol Cancer 12(1):94CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Herzog F et al (2013) Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Part Fibre Toxicol 10:11CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kaza SK, McClean S, Callaghan M (2011) IL-8 released from human lung epithelial cells induced by cystic fibrosis pathogens Burkholderia cepacia complex affects the growth and intracellular survival of bacteria. Int J Med Microbiol 301(1):26–33CrossRefPubMedGoogle Scholar
  34. 34.
    Persoz C et al (2012) Inflammatory response modulation of airway epithelial cells exposed to formaldehyde. Toxicol Lett 211(2):159–163CrossRefPubMedGoogle Scholar
  35. 35.
    Barhoumi R et al (2014) Effects of fatty acids on benzo[a]pyrene uptake and metabolism in human lung adenocarcinoma A549 cells. PLoS One 9(3):e90908CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chothia C, Jones EY (1997) The molecular structure of cell adhesion molecules. Annu Rev Biochem 66:823–862CrossRefPubMedGoogle Scholar
  37. 37.
    Yan X et al (2013) Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncol Rep 30(6):2733–2740PubMedGoogle Scholar
  38. 38.
    Kreft ME et al (2015) The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. Eur J Pharm Sci 69:1–9CrossRefPubMedGoogle Scholar
  39. 39.
    Kreda SM et al (2007) Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. J Physiol 584(Pt 1):245–259CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fiegel J et al (2003) Large porous particle impingement on lung epithelial cell monolayers—toward improved particle characterization in the lung. Pharm Res 20(5):788–796CrossRefPubMedGoogle Scholar
  41. 41.
    Harcourt JL et al (2011) Evaluation of the Calu-3 cell line as a model of in vitro respiratory syncytial virus infection. J Virol Methods 174(1–2):144–149CrossRefPubMedGoogle Scholar
  42. 42.
    Garcia-Canton C et al (2013) Metabolic characterization of cell systems used in in vitro toxicology testing: lung cell system BEAS-2B as a working example. Toxicol In Vitro 27(6):1719–1727CrossRefPubMedGoogle Scholar
  43. 43.
    Ghio AJ et al (2013) Growth of human bronchial epithelial cells at an air–liquid interface alters the response to particle exposure. Part Fibre Toxicol 10:25CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    van Schilfgaarde M et al (1995) Paracytosis of Haemophilus influenzae through cell layers of NCI-H292 lung epithelial cells. Infect Immun 63(12):4729–4737PubMedPubMedCentralGoogle Scholar
  45. 45.
    Janmaat ML et al (2006) Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or phosphatidyl inositol-3 kinase pathways in non-small cell lung cancer cells. Int J Cancer 118(1):209–214CrossRefPubMedGoogle Scholar
  46. 46.
    Vroling AB et al (2007) Allergen induced gene expression of airway epithelial cells shows a possible role for TNF-alpha. Allergy 62(11):1310–1319CrossRefPubMedGoogle Scholar
  47. 47.
    Winton HL et al (1998) Cell lines of pulmonary and non-pulmonary origin as tools to study the effects of house dust mite proteinases on the regulation of epithelial permeability. Clin Exp Allergy 28(10):1273–1285CrossRefPubMedGoogle Scholar
  48. 48.
    Chen YH et al (2015) Methadone enhances human influenza A virus replication. Addict Biol. doi: 10.1111/adb.12305
  49. 49.
    Newland N, Richter A (2008) Agents associated with lung inflammation induce similar responses in NCI-H292 lung epithelial cells. Toxicol In Vitro 22(7):1782–1788CrossRefPubMedGoogle Scholar
  50. 50.
    Chen AI et al (2014) Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Pathog 10(10):e1004480CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Chen F et al (2015) Transcriptome profiles of human lung epithelial cells A549 interacting with Aspergillus fumigatus by RNA-Seq. PLoS One 10(8):e0135720CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fulcher ML et al (2009) Novel human bronchial epithelial cell lines for cystic fibrosis research. Am J Physiol Lung Cell Mol Physiol 296(1):L82–L91CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Berman R et al (2014) MUC18 differentially regulates pro-inflammatory and anti-viral responses in human airway epithelial cells. J Clin Cell Immunol 5(5):257–265Google Scholar
  54. 54.
    Frieke Kuper C et al (2015) Toxicity assessment of aggregated/agglomerated cerium oxide nanoparticles in an in vitro 3D airway model: the influence of mucociliary clearance. Toxicol In Vitro 29(2):389–397CrossRefPubMedGoogle Scholar
  55. 55.
    Kastner PE et al (2013) A dynamic system for single and repeated exposure of airway epithelial cells to gaseous pollutants. Toxicol In Vitro 27(2):632–640CrossRefPubMedGoogle Scholar
  56. 56.
    Jyonouchi H et al (1998) The effects of hyperoxic injury and antioxidant vitamins on death and proliferation of human small airway epithelial cells. Am J Respir Cell Mol Biol 19(3):426–436CrossRefPubMedGoogle Scholar
  57. 57.
    Forbes B, Ehrhardt C (2005) Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 60(2):193–205CrossRefPubMedGoogle Scholar
  58. 58.
    Saatian B et al (2013) Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers 1(2):e24333CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Coakley RD et al (2003) Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci USA 100(26):16083–16088CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Rusznak C et al (2000) Effect of cigarette smoke on the permeability and IL-1beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 23(4):530–536CrossRefPubMedGoogle Scholar
  61. 61.
    Hao Y et al (2012) Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2. Cell Microbiol 14(3):401–415CrossRefPubMedGoogle Scholar
  62. 62.
    Verriere V et al (2012) Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia. PLoS One 7(5):e37746CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Baines KJ et al (2015) Airway beta-defensin-1 protein is elevated in COPD and severe asthma. Mediators Inflamm 2015:407271CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Panas A et al (2014) Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure. Beilstein J Nanotechnol 5:1590–1602CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Tapparel C et al (2013) Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro. Virology 446(1–2):1–8CrossRefPubMedGoogle Scholar
  66. 66.
    David J, Sayer NM, Sarkar-Tyson M (2014) The use of a three-dimensional cell culture model to investigate host-pathogen interactions of Francisella tularensis in human lung epithelial cells. Microbes Infect 16(9):735–745CrossRefPubMedGoogle Scholar
  67. 67.
    Mathis C et al (2013) Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air–liquid interface resemble bronchial epithelium from human smokers. Am J Physiol Lung Cell Mol Physiol 304(7):L489–L503CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Steiner S et al (2012) Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure. Toxicol Lett 214(2):218–225CrossRefPubMedGoogle Scholar
  69. 69.
    Thaikoottathil JV et al (2009) Cigarette smoke extract reduces VEGF in primary human airway epithelial cells. Eur Respir J 33(4):835–843CrossRefPubMedGoogle Scholar
  70. 70.
    Muckter H et al (1998) A novel apparatus for the exposure of cultured cells to volatile agents. J Pharmacol Toxicol Methods 40(2):63–69CrossRefPubMedGoogle Scholar
  71. 71.
    Lenz AG et al (2014) Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured in air–liquid interface conditions. Am J Respir Cell Mol Biol 51(4):526–535CrossRefPubMedGoogle Scholar
  72. 72.
    Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845CrossRefPubMedGoogle Scholar
  73. 73.
    Liu FF et al (2013) Hanging drop: an in vitro air toxic exposure model using human lung cells in 2D and 3D structures. J Hazard Mater 261:701–710CrossRefPubMedGoogle Scholar
  74. 74.
    Hammond TG, Hammond JM (2001) Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281(1):F12–F25PubMedGoogle Scholar
  75. 75.
    Huang S et al (2013) Potential of in vitro reconstituted 3D human airway epithelia (MucilAir) to assess respiratory sensitizers. Toxicol In Vitro 27(3):1151–1156CrossRefPubMedGoogle Scholar
  76. 76.
    Wu X et al (2011) Human bronchial epithelial cells differentiate to 3D glandular acini on basement membrane matrix. Am J Respir Cell Mol Biol 44(6):914–921CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Wheelock MJ, Johnson KR (2003) Cadherin-mediated cellular signaling. Curr Opin Cell Biol 15(5):509–514CrossRefPubMedGoogle Scholar
  78. 78.
    Berger JT et al (1999) Respiratory carcinoma cell lines. MUC genes and glycoconjugates. Am J Respir Cell Mol Biol 20(3):500–510CrossRefPubMedGoogle Scholar
  79. 79.
    Kleinman HK, Philp D, Hoffman MP (2003) Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 14(5):526–532CrossRefPubMedGoogle Scholar
  80. 80.
    Ding P et al (2014) Transmigration and phagocytosis of macrophages in an airway infection model using four-dimensional techniques. Am J Respir Cell Mol Biol 51(1):1–10CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemical EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations