, Volume 194, Issue 2, pp 201–217 | Cite as

Optimizing Prophylactic CPAP in Patients Without Obstructive Sleep Apnoea for High-Risk Abdominal Surgeries: A Meta-regression Analysis

  • Preet Mohinder Singh
  • Anuradha Borle
  • Dipal Shah
  • Ashish Sinha
  • Jeetinder Kaur Makkar
  • Anjan Trikha
  • Basavana Gouda Goudra



Prophylactic continuous positive airway pressure (CPAP) can prevent pulmonary adverse events following upper abdominal surgeries. The present meta-regression evaluates and quantifies the effect of degree/duration of (CPAP) on the incidence of postoperative pulmonary events.


Medical databases were searched for randomized controlled trials involving adult patients, comparing the outcome in those receiving prophylactic postoperative CPAP versus no CPAP, undergoing high-risk abdominal surgeries. Our meta-analysis evaluated the relationship between the postoperative pulmonary complications and the use of CPAP. Furthermore, meta-regression was used to quantify the effect of cumulative duration and degree of CPAP on the measured outcomes.


Seventy-three potentially relevant studies were identified, of which 11 had appropriate data, allowing us to compare a total of 362 and 363 patients in CPAP and control groups, respectively. Qualitatively, Odds ratio for CPAP showed protective effect for pneumonia [0.39 (0.19–0.78)], atelectasis [0.51 (0.32–0.80)] and pulmonary complications [0.37 (0.24–0.56)] with zero heterogeneity. For prevention of pulmonary complications, odds ratio was better for continuous than intermittent CPAP. Meta-regression demonstrated a positive correlation between the degree of CPAP and the incidence of pneumonia with a regression coefficient of +0.61 (95 % CI 0.02–1.21, P = 0.048, τ 2 = 0.078, r 2 = 7.87 %). Overall, adverse effects were similar with or without the use of CPAP.


Prophylactic postoperative use of continuous CPAP significantly reduces the incidence of postoperative pneumonia, atelectasis and pulmonary complications in patients undergoing high-risk abdominal surgeries. Quantitatively, increasing the CPAP levels does not necessarily enhance the protective effect against pneumonia. Instead, protective effect diminishes with increasing degree of CPAP.


Prophylactic CPAP Postoperative pulmonary complication Atelectasis Pneumonia 


Compliance with Ethical Standards

Conflict of interest


Supplementary material

408_2016_9855_MOESM1_ESM.enq (1 kb)
Supplementary material 1 (ENQ 604 bytes)
408_2016_9855_MOESM2_ESM.docx (13 kb)
Table showing PaO2/FiO2 ratios in preoperative and postoperative phase. Supplementary material 2 (DOCX 12 kb)


  1. 1.
    Martínez G, Cruz P (2008) Atelectasis in general anesthesia and alveolar recruitment strategies. Rev Esp Anestesiol Reanim 55:493–503CrossRefPubMedGoogle Scholar
  2. 2.
    Hedenstierna G, Rothen HU (2000) Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput 16:329–335CrossRefPubMedGoogle Scholar
  3. 3.
    Ledowski T, Paech MJ, Patel B, Schug SA (2006) Bronchial mucus transport velocity in patients receiving propofol and remifentanil versus sevoflurane and remifentanil anesthesia. Anesth Analg 102:1427–1430. doi: 10.1213/01.ane.0000204317.78586.07 CrossRefPubMedGoogle Scholar
  4. 4.
    Kanat F, Golcuk A, Teke T, Golcuk M (2007) Risk factors for postoperative pulmonary complications in upper abdominal surgery. ANZ J Surg 77:135–141. doi: 10.1111/j.1445-2197.2006.03993.x CrossRefPubMedGoogle Scholar
  5. 5.
    de Jong MAC, Ladha KS, Melo MFV et al (2015) Differential effects of intraoperative positive end-expiratory pressure (PEEP) on respiratory outcome in major abdominal surgery versus craniotomy. Ann Surg. doi: 10.1097/SLA.0000000000001499 Google Scholar
  6. 6.
    Hodgson LE, Murphy PB, Hart N (2015) Respiratory management of the obese patient undergoing surgery. J Thorac Dis 7:943–952. doi: 10.3978/j.issn.2072-1439.2015.03.08 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lindner KH, Lotz P, Ahnefeld FW (1987) Continuous positive airway pressure effect on functional residual capacity, vital capacity and its subdivisions. Chest 92:66–70CrossRefPubMedGoogle Scholar
  8. 8.
    Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1. doi: 10.1186/2046-4053-4-1 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gurusamy KS, Gluud C, Nikolova D, Davidson BR (2009) Assessment of risk of bias in randomized clinical trials in surgery. Br J Surg 96:342–349. doi: 10.1002/bjs.6558 CrossRefPubMedGoogle Scholar
  10. 10.
    Christensen EF, Schultz P, Jensen OV et al (1991) Postoperative pulmonary complications and lung function in high-risk patients: a comparison of three physiotherapy regimens after upper abdominal surgery in general anesthesia. Acta Anaesthesiol Scand 35:97–104CrossRefPubMedGoogle Scholar
  11. 11.
    Denehy L, Carroll S, Ntoumenopoulos G, Jenkins S (2001) A randomized controlled trial comparing periodic mask CPAP with physiotherapy after abdominal surgery. Physiother Res Int 6:236–250CrossRefPubMedGoogle Scholar
  12. 12.
    Ferreyra GP, Baussano I, Squadrone V et al (2008) Continuous positive airway pressure for treatment of respiratory complications after abdominal surgery: a systematic review and meta-analysis. Ann Surg 247:617–626. doi: 10.1097/SLA.0b013e3181675829 CrossRefPubMedGoogle Scholar
  13. 13.
    Brooks-Brunn JA (1997) Predictors of postoperative pulmonary complications following abdominal surgery. Chest 111:564–571CrossRefPubMedGoogle Scholar
  14. 14.
    Haines KJ, Skinner EH, Berney S, Austin Health POST Study Investigators (2013) Association of postoperative pulmonary complications with delayed mobilisation following major abdominal surgery: an observational cohort study. Physiotherapy 99:119–125. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  15. 15.
    Platell C, Hall JC (1997) Atelectasis after abdominal surgery. J Am Coll Surg 185:584–592CrossRefPubMedGoogle Scholar
  16. 16.
    Futier E, Constantin J-M, Paugam-Burtz C et al (2013) A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 369:428–437. doi: 10.1056/NEJMoa1301082 CrossRefPubMedGoogle Scholar
  17. 17.
    Dec GW Jr, Stern TA, Welch C (1985) The effects of electroconvulsive therapy on serial electrocardiograms and serum cardiac enzyme values. A prospective study of depressed hospitalized inpatients. JAMA 253:2525–2529CrossRefPubMedGoogle Scholar
  18. 18.
    Ireland CJ, Chapman TM, Mathew SF et al (2014) Continuous positive airway pressure (CPAP) during the postoperative period for prevention of postoperative morbidity and mortality following major abdominal surgery. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD008930.pub2 PubMedGoogle Scholar
  19. 19.
    Silva YR, Li SK, Rickard MJFX (2013) Does the addition of deep breathing exercises to physiotherapy-directed early mobilisation alter patient outcomes following high-risk open upper abdominal surgery? Cluster randomised controlled trial. Physiotherapy 99:187–193. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  20. 20.
    Meyhoff CS, Wetterslev J, Jorgensen LN et al (2009) Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA 302:1543–1550. doi: 10.1001/jama.2009.1452 CrossRefPubMedGoogle Scholar
  21. 21.
    Gu W-J, Wang F, Liu J-C (2015) Effect of lung-protective ventilation with lower tidal volumes on clinical outcomes among patients undergoing surgery: a meta-analysis of randomized controlled trials. CMAJ 187:E101–E109. doi: 10.1503/cmaj.141005 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hemmes SNT, Gama de M, PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology et al (2014) High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 384:495–503. doi: 10.1016/S0140-6736(14)60416-5 CrossRefPubMedGoogle Scholar
  23. 23.
    do Nascimento P Jr, Módolo NSP, Andrade S et al (2014) Incentive spirometry for prevention of postoperative pulmonary complications in upper abdominal surgery. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD006058.pub3 Google Scholar
  24. 24.
    Talab HF, Zabani IA, Abdelrahman HS et al (2009) Intraoperative ventilatory strategies for prevention of pulmonary atelectasis in obese patients undergoing laparoscopic bariatric surgery. Anesth Analg 109:1511–1516. doi: 10.1213/ANE.0b013e3181ba7945 CrossRefPubMedGoogle Scholar
  25. 25.
    Futier E, Jaber S (2014) Lung-protective ventilation in abdominal surgery. Curr Opin Crit Care 20:426–430. doi: 10.1097/MCC.0000000000000121 CrossRefPubMedGoogle Scholar
  26. 26.
    Birkmeyer JD, Dimick JB, Staiger DO (2006) Operative mortality and procedure volume as predictors of subsequent hospital performance. Ann Surg 243:411–417. doi: 10.1097/01.sla.0000201800.45264.51 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hedenstierna G (2012) Oxygen and anesthesia: what lung do we deliver to the post-operative ward? Acta Anaesthesiol Scand 56:675–685. doi: 10.1111/j.1399-6576.2012.02689.x CrossRefPubMedGoogle Scholar
  28. 28.
    Neumann P, Rothen HU, Berglund JE et al (1999) Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration. Acta Anaesthesiol Scand 43:295–301CrossRefPubMedGoogle Scholar
  29. 29.
    Katsura M, Kuriyama A, Takeshima T et al (2015) Preoperative inspiratory muscle training for postoperative pulmonary complications in adults undergoing cardiac and major abdominal surgery. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD010356.pub2 PubMedGoogle Scholar
  30. 30.
    Pompei L, Della Rocca G (2013) The postoperative airway: unique challenges? Curr Opin Crit Care 19:359–363. doi: 10.1097/MCC.0b013e3283632ede CrossRefPubMedGoogle Scholar
  31. 31.
    Fiore JF (2012) Use of breathing exercises and enforced mobilization after colorectal surgery. Surgery 151:632–633. doi: 10.1016/j.surg.2011.07.034 CrossRefPubMedGoogle Scholar
  32. 32.
    Gaillet G, Favelle O, Guilleminault L et al (2015) Gastroesophageal reflux disease is a risk factor for severity of organizing pneumonia. Respiration 89:119–126. doi: 10.1159/000369470 CrossRefPubMedGoogle Scholar
  33. 33.
    Lettieri CJ, Collen JF, Eliasson AH, Quast TM (2009) Sedative use during continuous positive airway pressure titration improves subsequent compliance: a randomized, double-blind, placebo-controlled trial. Chest 136:1263–1268. doi: 10.1378/chest.09-0811 CrossRefPubMedGoogle Scholar
  34. 34.
    Gay PC (2009) Complications of noninvasive ventilation in acute care. Respir Care 54:246–257PubMedGoogle Scholar
  35. 35.
    El-Serag HB, Sonnenberg A (1997) Comorbid occurrence of laryngeal or pulmonary disease with esophagitis in United States military veterans. Gastroenterology 113:755–760CrossRefPubMedGoogle Scholar
  36. 36.
    Sanner BM, Fluerenbrock N, Kleiber-Imbeck A et al (2001) Effect of continuous positive airway pressure therapy on infectious complications in patients with obstructive sleep apnea syndrome. Respiration 68:483–487CrossRefPubMedGoogle Scholar
  37. 37.
    Garvey JF, McNicholas WT (2010) Continuous positive airway pressure therapy: new generations. Indian J Med Res 131:259–266PubMedGoogle Scholar
  38. 38.
    Hertegonne K, Bauters F (2010) The value of auto-adjustable CPAP devices in pressure titration and treatment of patients with obstructive sleep apnea syndrome. Sleep Med Rev 14:115–119. doi: 10.1016/j.smrv.2009.07.001 CrossRefPubMedGoogle Scholar
  39. 39.
    Iftikhar IH, Khan MF, Das A, Magalang UJ (2013) Meta-analysis: continuous positive airway pressure improves insulin resistance in patients with sleep apnea without diabetes. Ann Am Thorac Soc 10:115–120. doi: 10.1513/AnnalsATS.201209-081OC CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Doherty LS, Kiely JL, Swan V, McNicholas WT (2005) Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome. Chest 127:2076–2084. doi: 10.1378/chest.127.6.2076 CrossRefPubMedGoogle Scholar
  41. 41.
    Baessler A, Nadeem R, Harvey M et al (2013) Treatment for sleep apnea by continuous positive airway pressure improves levels of inflammatory markers—a meta-analysis. J Inflamm (Lond) 10:13. doi: 10.1186/1476-9255-10-13 CrossRefGoogle Scholar
  42. 42.
    Steiropoulos P, Kotsianidis I, Nena E et al (2009) Long-term effect of continuous positive airway pressure therapy on inflammation markers of patients with obstructive sleep apnea syndrome. Sleep 32:537–543PubMedPubMedCentralGoogle Scholar
  43. 43.
    Watt DG, Horgan PG, McMillan DC (2015) Routine clinical markers of the magnitude of the systemic inflammatory response after elective operation: a systematic review. Surgery 157:362–380. doi: 10.1016/j.surg.2014.09.009 CrossRefPubMedGoogle Scholar
  44. 44.
    Zach MS (2000) The physiology of forced expiration. Paediatr Respir Rev 1:36–39. doi: 10.1053/prrv.2000.0010 PubMedGoogle Scholar
  45. 45.
    Goudra BG, Singh PM, Gouda G et al (2015) Safety of non-anesthesia provider-administered propofol (NAAP) sedation in advanced gastrointestinal endoscopic procedures: comparative meta-analysis of pooled results. Dig Dis Sci 60:2612–2627. doi: 10.1007/s10620-015-3608-x CrossRefPubMedGoogle Scholar
  46. 46.
    Singh PM, Arora S, Borle A et al (2015) Evaluation of etomidate for seizure duration in electroconvulsive therapy: a systematic review and meta-analysis. J ECT. doi: 10.1097/YCT.0000000000000212 PubMedGoogle Scholar
  47. 47.
    Carlsson C, Sondén B, Thylén U (1981) Can postoperative continuous positive airway pressure (CPAP) prevent pulmonary complications after abdominal surgery? Intensive Care Med 7(5):225–229CrossRefPubMedGoogle Scholar
  48. 48.
    Böhner H, Kindgen-Milles D, Grust A et al (2002) Prophylactic nasal continuous positive airway pressure after major vascular surgery: results of a prospective randomized trial. Langenbecks Arch Surg 387(1):21–26CrossRefPubMedGoogle Scholar
  49. 49.
    Anderes C, Anderes U, Gasser D et al (1979) Postoperative spontaneous breathing with CPAP to normalize late postoperative oxygenation. Intensive Care Med 5(1):15–21CrossRefPubMedGoogle Scholar
  50. 50.
    Stock MC, Downs JB, Gauer PK et al (1985) Prevention of postoperative pulmonary complications with CPAP, incentive spirometry, and conservative therapy. Chest 87(2):151–157CrossRefPubMedGoogle Scholar
  51. 51.
    Ricksten SE, Bengtsson A, Soderberg C et al (1986) Effects of periodic positive airway pressure by mask on postoperative pulmonary function. Chest 89(6):774–781CrossRefPubMedGoogle Scholar
  52. 52.
    Lindner KH, Lotz P, Ahnefeld FW (1987) Continuous positive airway pressure effect on functional residual capacity, vital capacity and its subdivisions. Chest 92(1):66–70CrossRefPubMedGoogle Scholar
  53. 53.
    Squadrone V, Coha M, Cerutti E et al (2005) Continuous positive airway pressure for treatment of postoperative hypoxemia: a randomized controlled trial. JAMA 293(5):589–595CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Preet Mohinder Singh
    • 1
  • Anuradha Borle
    • 1
  • Dipal Shah
    • 1
    • 5
  • Ashish Sinha
    • 2
  • Jeetinder Kaur Makkar
    • 3
  • Anjan Trikha
    • 1
  • Basavana Gouda Goudra
    • 4
  1. 1.Department of AnesthesiaAll India Institute of Medical SciencesNew DelhiIndia
  2. 2.Anesthesiology and Perioperative MedicineDrexel University College of MedicinePhiladelphiaUSA
  3. 3.Post Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
  4. 4.Department of AnesthesiaHospital of the University of PennsylvaniaPhiladelphiaUSA
  5. 5.Rhushabh Nursing HomeMumbaiIndia

Personalised recommendations