Lung

, Volume 192, Issue 5, pp 639–648

Lung Cancer Screening Beyond Low-Dose Computed Tomography: The Role of Novel Biomarkers

Article

Abstract

Lung cancer is the most common and lethal malignancy in the world. The landmark National lung screening trial (NLST) showed a 20 % relative reduction in mortality in high-risk individuals with screening low-dose computed tomography. However, the poor specificity and low prevalence of lung cancer in the NLST provide major limitations to its widespread use. Furthermore, a lung nodule on CT scan requires a nuanced and individualized approach towards management. In this regard, advances in high through-put technology (molecular diagnostics, multi-gene chips, proteomics, and bronchoscopic techniques) have led to discovery of lung cancer biomarkers that have shown potential to complement the current screening standards. Early detection of lung cancer can be achieved by analysis of biomarkers from tissue samples within the respiratory tract such as sputum, saliva, nasal/bronchial airway epithelial cells and exhaled breath condensate or through peripheral biofluids such as blood, serum and urine. Autofluorescence bronchoscopy has been employed in research setting to identify pre-invasive lesions not identified on CT scan. Although these modalities are not yet commercially available in clinic setting, they will be available in the near future and clinicians who care for patients with lung cancer should be aware. In this review, we present up-to-date state of biomarker development, discuss their clinical relevance and predict their future role in lung cancer management.

Keywords

Lung cancer screening Biomarkers Low-dose computed tomography 

References

  1. 1.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30. doi:10.3322/caac.21166 CrossRefPubMedGoogle Scholar
  2. 2.
    Jett JR (1993) Current treatment of unresectable lung cancer. Mayo Clin Proc 68(6):603–611CrossRefPubMedGoogle Scholar
  3. 3.
    Mountain CF (1997) Revisions in the international system for staging lung cancer. Chest 111(6):1710–1717CrossRefPubMedGoogle Scholar
  4. 4.
    Quekel LG, Kessels AG, Goei R, van Engelshoven JM (1999) Miss rate of lung cancer on the chest radiograph in clinical practice. Chest 115(3):720–724CrossRefPubMedGoogle Scholar
  5. 5.
    National Lung Screening Trial Research Team, Aberle DR, Adams AM et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 365(5):395–409. doi:10.1056/NEJMoa1102873 CrossRefGoogle Scholar
  6. 6.
    Oken MM, Hocking WG, Kvale PA et al (2011) Screening by chest radiograph and lung cancer mortality: the prostate, lung, colorectal, and ovarian (plco) randomized trial. JAMA 306(17):1865–1873. doi:10.1001/jama.2011.1591 CrossRefPubMedGoogle Scholar
  7. 7.
    Pinsky PF, Berg CD (2012) Applying the national lung screening trial eligibility criteria to the US population: what percent of the population and of incident lung cancers would be covered? J Med Screen 19(3):154–156. doi:10.1258/jms.2012.012010 CrossRefPubMedGoogle Scholar
  8. 8.
    Bach PB, Kattan MW, Thornquist MD et al (2003) Variations in lung cancer risk among smokers. J Natl Cancer Inst 95(6):470–478CrossRefPubMedGoogle Scholar
  9. 9.
    Spitz MR, Hong WK, Amos CI et al (2007) A risk model for prediction of lung cancer. J Natl Cancer Inst 99(9):715–726. doi:10.1093/jnci/djk153 CrossRefPubMedGoogle Scholar
  10. 10.
    Cassidy A, Myles JP, van Tongeren M et al (2008) The LLP risk model: an individual risk prediction model for lung cancer. Br J Cancer 98(2):270–276. doi:10.1038/sj.bjc.6604158 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Tammemagi CM, Pinsky PF, Caporaso NE et al (2011) Lung cancer risk prediction: prostate, lung, colorectal and ovarian cancer screening trial models and validation. J Natl Cancer Inst 103(13):1058–1068. doi:10.1093/jnci/djr173 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Kovalchik SA, Tammemagi M, Berg CD et al (2013) Targeting of low-dose CT screening according to the risk of lung-cancer death. N Engl J Med 369(3):245–254. doi:10.1056/NEJMoa1301851 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Hassanein M, Callison JC, Callaway-Lane C, Aldrich MC, Grogan EL, Massion PP (2012) The state of molecular biomarkers for the early detection of lung cancer. Cancer Prev Res (Phila) 5(8):992–1006. doi:10.1158/1940-6207.CAPR-11-0441 CrossRefGoogle Scholar
  14. 14.
    Brothers JF, Hijazi K, Mascaux C, El-Zein RA, Spitz MR, Spira A (2013) Bridging the clinical gaps: Genetic, epigenetic and transcriptomic biomarkers for the early detection of lung cancer in the post-national lung screening trial era. BMC Med. 11:168. doi:10.1186/1741-7015-11-168 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6(5):963–968CrossRefPubMedGoogle Scholar
  16. 16.
    Spira A, Beane J, Shah V et al (2004) Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A. 101(27):10143–10148. doi:10.1073/pnas.0401422101 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Spira A, Beane JE, Shah V et al (2007) Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med 13(3):361–366. doi:10.1038/nm1556 CrossRefPubMedGoogle Scholar
  18. 18.
    Beane J, Sebastiani P, Whitfield TH et al (2008) A prediction model for lung cancer diagnosis that integrates genomic and clinical features. Cancer Prev Res (Phila). 1(1):56–64. doi:10.1158/1940-6207.CAPR-08-0011 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Sridhar S, Schembri F, Zeskind J et al (2008) Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium. BMC Genomics. 9:259. doi:10.1186/1471-2164-9-259 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Zhang X, Sebastiani P, Liu G et al (2010) Similarities and differences between smoking-related gene expression in nasal and bronchial epithelium. Physiol Genomics 41(1):1–8. doi:10.1152/physiolgenomics.00167.2009 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Zhang L, Xiao H, Zhou H et al (2012) Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol Life Sci 69(19):3341–3350. doi:10.1007/s00018-012-1027-0 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Whitney DH, Rabin M, Luo J, Porta K, Brody J, Spira A. Analytical validation of BronchoGen, an RT-PCR gene-expression test to improve the diagnostic yield of bronchoscopy for lung cancer. In: American Thoracic Society; 2013:A4758-A4758. doi:10.1164/ajrccm-conference.2013.187.1_MeetingAbstracts.A4758
  23. 23.
    Gustafson AM, Soldi R, Anderlind C et al (2010) Airway PI3 K pathway activation is an early and reversible event in lung cancer development. Sci Transl Med 2(26):26ra25. doi:10.1126/scitranslmed.3000251 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Woolner LB, Fontana RS, Cortese DA et al (1984) Roentgenographically occult lung cancer: pathologic findings and frequency of multicentricity during a 10-year period. Mayo Clin Proc 59(7):453–466CrossRefPubMedGoogle Scholar
  25. 25.
    Bota S, Auliac JB, Paris C et al (2001) Follow-up of bronchial precancerous lesions and carcinoma in situ using fluorescence endoscopy. Am J Respir Crit Care Med 164(9):1688–1693CrossRefPubMedGoogle Scholar
  26. 26.
    Breuer RH, Pasic A, Smit EF et al (2005) The natural course of preneoplastic lesions in bronchial epithelium. Clin Cancer Res 11(2 Pt 1):537–543PubMedGoogle Scholar
  27. 27.
    Lam S, MacAulay C, Hung J, LeRiche J, Profio AE, Palcic B (1993) Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device. J Thorac Cardiovasc Surg 105(6):1035–1040PubMedGoogle Scholar
  28. 28.
    Loewen G, Natarajan N, Tan D et al (2007) Autofluorescence bronchoscopy for lung cancer surveillance based on risk assessment. Thorax 62(4):335–340. doi:10.1136/thx.2006.068999 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Sun J, Garfield DH, Lam B et al (2011) The value of autofluorescence bronchoscopy combined with white light bronchoscopy compared with white light alone in the diagnosis of intraepithelial neoplasia and invasive lung cancer: a meta-analysis. J Thorac Oncol. 6(8):1336–1344. doi:10.1097/JTO.0b013e318220c984 CrossRefPubMedGoogle Scholar
  30. 30.
    Chen W, Gao X, Tian Q, Chen L (2011) A comparison of autofluorescence bronchoscopy and white light bronchoscopy in detection of lung cancer and preneoplastic lesions: a meta-analysis. Lung Cancer 73(2):183–188. doi:10.1016/j.lungcan.2010.12.002 CrossRefPubMedGoogle Scholar
  31. 31.
    Gazdar AF, Minna JD (2000) Angiogenesis and the multistage development of lung cancers. Clin Cancer Res 6(5):1611–1612PubMedGoogle Scholar
  32. 32.
    Herth FJ, Eberhardt R, Anantham D, Gompelmann D, Zakaria MW, Ernst A (2009) Narrow-band imaging bronchoscopy increases the specificity of bronchoscopic early lung cancer detection. J Thorac Oncol. 4(9):1060–1065. doi:10.1097/JTO.0b013e3181b24100 CrossRefPubMedGoogle Scholar
  33. 33.
    Chiyo M, Shibuya K, Hoshino H et al (2005) Effective detection of bronchial preinvasive lesions by a new autofluorescence imaging bronchovideoscope system. Lung Cancer 48(3):307–313. doi:10.1016/j.lungcan.2004.11.023 CrossRefPubMedGoogle Scholar
  34. 34.
    Rahman SM, Gonzalez AL, Li M et al (2011) Lung cancer diagnosis from proteomic analysis of preinvasive lesions. Cancer Res 71(8):3009–3017. doi:10.1158/0008-5472.CAN-10-2510 PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    van de Kant KD, van der Sande LJ, Jobsis Q, van Schayck OC, Dompeling E (2012) Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir Res. 13:117. doi:10.1186/1465-9921-13-117 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Dent AG, Sutedja TG, Zimmerman PV (2013) Exhaled breath analysis for lung cancer. J Thorac Dis. 5(Suppl 5):S540–S550. doi:10.3978/j.issn.2072-1439.2013.08.44 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Phillips M, Cataneo RN, Cummin AR et al (2003) Detection of lung cancer with volatile markers in the breath. Chest 123(6):2115–2123CrossRefPubMedGoogle Scholar
  38. 38.
    Phillips M, Altorki N, Austin JH et al (2007) Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 3(2):95–109PubMedGoogle Scholar
  39. 39.
    Machado RF, Laskowski D, Deffenderfer O et al (2005) Detection of lung cancer by sensor array analyses of exhaled breath. Am J Respir Crit Care Med 171(11):1286–1291. doi:10.1164/rccm.200409-1184OC PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Mazzone PJ, Hammel J, Dweik R et al (2007) Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 62(7):565–568. doi:10.1136/thx.2006.072892 PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T (2006) Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr Cancer Ther. 5(1):30–39. doi:10.1177/1534735405285096 CrossRefPubMedGoogle Scholar
  42. 42.
    Ehmann R, Boedeker E, Friedrich U et al (2012) Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J 39(3):669–676. doi:10.1183/09031936.00051711 CrossRefPubMedGoogle Scholar
  43. 43.
    Yang Ai SS, Hsu K, Herbert C et al (2013) Mitochondrial DNA mutations in exhaled breath condensate of patients with lung cancer. Respir Med 107(6):911–918. doi:10.1016/j.rmed.2013.02.007 CrossRefPubMedGoogle Scholar
  44. 44.
    Belinsky SA, Palmisano WA, Gilliland FD et al (2002) Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res 62(8):2370–2377PubMedGoogle Scholar
  45. 45.
    Xing L, Todd NW, Yu L, Fang H, Jiang F (2010) Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Mod Pathol 23(8):1157–1164. doi:10.1038/modpathol.2010.111 CrossRefPubMedGoogle Scholar
  46. 46.
    Yu L, Todd NW, Xing L et al (2010) Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer 127(12):2870–2878. doi:10.1002/ijc.25289 PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Turk MJ, Wolchok JD, Guevara-Patino JA, Goldberg SM, Houghton AN (2002) Multiple pathways to tumor immunity and concomitant autoimmunity. Immunol Rev 188:122–135CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang JY, Casiano CA, Peng XX, Koziol JA, Chan EK, Tan EM (2003) Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol Biomarkers Prev. 12(2):136–143PubMedGoogle Scholar
  49. 49.
    Trivers GE, De Benedetti VM, Cawley HL et al (1996) Anti-p53 antibodies in sera from patients with chronic obstructive pulmonary disease can predate a diagnosis of cancer. Clin Cancer Res 2(10):1767–1775PubMedGoogle Scholar
  50. 50.
    Boyle P, Chapman CJ, Holdenrieder S et al (2011) Clinical validation of an autoantibody test for lung cancer. Ann Oncol 22(2):383–389. doi:10.1093/annonc/mdq361 PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Chapman CJ, Healey GF, Murray A et al (2012) EarlyCDT(R)-lung test: improved clinical utility through additional autoantibody assays. Tumour Biol 33(5):1319–1326. doi:10.1007/s13277-012-0379-2 PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Jett JR, Peek LJ, Fredericks L, Jewell W, Pingleton WW, Robertson JF (2014) Audit of the autoantibody test, EarlyCDT((R))-lung, in 1600 patients: an evaluation of its performance in routine clinical practice. Lung Cancer 83(1):51–55. doi:10.1016/j.lungcan.2013.10.008 CrossRefPubMedGoogle Scholar
  53. 53.
    Qiu J, Choi G, Li L et al (2008) Occurrence of autoantibodies to annexin I, 14-3-3 theta and LAMR1 in prediagnostic lung cancer sera. J Clin Oncol 26(31):5060–5066. doi:10.1200/JCO.2008.16.2388 PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Wu L, Chang W, Zhao J et al (2010) Development of autoantibody signatures as novel diagnostic biomarkers of non-small cell lung cancer. Clin Cancer Res 16(14):3760–3768. doi:10.1158/1078-0432.CCR-10-0193 PubMedGoogle Scholar
  55. 55.
    Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702 CrossRefPubMedGoogle Scholar
  56. 56.
    Mascaux C, Laes JF, Anthoine G et al (2009) Evolution of microRNA expression during human bronchial squamous carcinogenesis. Eur Respir J 33(2):352–359. doi:10.1183/09031936.00084108 CrossRefPubMedGoogle Scholar
  57. 57.
    Boeri M, Verri C, Conte D et al (2011) MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A. 108(9):3713–3718. doi:10.1073/pnas.1100048108 PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Bianchi F, Nicassio F, Marzi M et al (2011) A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med. 3(8):495–503. doi:10.1002/emmm.201100154 PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Shen J, Liu Z, Todd NW et al (2011) Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer. 11:374. doi:10.1186/1471-2407-11-374 PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Chen X, Hu Z, Wang W et al (2012) Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int J Cancer 130(7):1620–1628. doi:10.1002/ijc.26177 CrossRefPubMedGoogle Scholar
  61. 61.
    Shen Y, Wang T, Yang T et al (2013) Diagnostic value of circulating microRNAs for lung cancer: a meta-analysis. Genet Test Mol Biomarkers. 17(5):359–366. doi:10.1089/gtmb.2012.0370 PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Spitz MR, Amos CI, Dong Q, Lin J, Wu X (2008) The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer. J Natl Cancer Inst 100(21):1552–1556. doi:10.1093/jnci/djn363 PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610. doi:10.1038/nrg1655 CrossRefPubMedGoogle Scholar
  64. 64.
    Schmidt B, Liebenberg V, Dietrich D et al (2010) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer. 10:600. doi:10.1186/1471-2407-10-600 PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Wang L, Aakre JA, Jiang R et al (2010) Methylation markers for small cell lung cancer in peripheral blood leukocyte DNA. J Thorac Oncol. 5(6):778–785. doi:10.1097/JTO.0b013e3181d6e0b3 PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG (1999) Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 59(1):67–70PubMedGoogle Scholar
  67. 67.
    Begum S, Brait M, Dasgupta S et al (2011) An epigenetic marker panel for detection of lung cancer using cell-free serum DNA. Clin Cancer Res 17(13):4494–4503. doi:10.1158/1078-0432.CCR-10-3436 PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Kneip C, Schmidt B, Seegebarth A et al (2011) SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol. 6(10):1632–1638. doi:10.1097/JTO.0b013e318220ef9a CrossRefPubMedGoogle Scholar
  69. 69.
    Rotunno M, Hu N, Su H et al (2011) A gene expression signature from peripheral whole blood for stage I lung adenocarcinoma. Cancer Prev Res (Phila). 4(10):1599–1608. doi:10.1158/1940-6207.CAPR-10-0170 PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Zander T, Hofmann A, Staratschek-Jox A et al (2011) Blood-based gene expression signatures in non-small cell lung cancer. Clin Cancer Res 17(10):3360–3367. doi:10.1158/1078-0432.CCR-10-0533 CrossRefPubMedGoogle Scholar
  71. 71.
    Takano A, Ishikawa N, Nishino R et al (2009) Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res 69(16):6694–6703. doi:10.1158/0008-5472.CAN-09-0016 CrossRefPubMedGoogle Scholar
  72. 72.
    Kulpa J, Wojcik E, Reinfuss M, Kolodziejski L (2002) Carcinoembryonic antigen, squamous cell carcinoma antigen, CYFRA 21-1, and neuron-specific enolase in squamous cell lung cancer patients. Clin Chem 48(11):1931–1937PubMedGoogle Scholar
  73. 73.
    Patz EF Jr (2007) Campa MJ, Gottlin EB, Kusmartseva I, Guan XR, Herndon JE,2nd. Panel of serum biomarkers for the diagnosis of lung cancer. J Clin Oncol. 25(35):5578–5583. doi:10.1200/JCO.2007.13.5392 CrossRefPubMedGoogle Scholar
  74. 74.
    Yildiz PB, Shyr Y, Rahman JS et al (2007) Diagnostic accuracy of MALDI mass spectrometric analysis of unfractionated serum in lung cancer. J Thorac Oncol. 2(10):893–901. doi:10.1097/JTO.0b013e31814b8be7 PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Pecot CV, Li M, Zhang XJ et al (2012) Added value of a serum proteomic signature in the diagnostic evaluation of lung nodules. Cancer Epidemiol Biomarkers Prev. 21(5):786–792. doi:10.1158/1055-9965.EPI-11-0932 PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Sozzi G, Conte D, Leon M et al (2003) Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol 21(21):3902–3908. doi:10.1200/JCO.2003.02.006 CrossRefPubMedGoogle Scholar
  77. 77.
    Newman AM, Bratman SV, To J et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. doi:10.1038/nm.3519 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. doi:10.1038/nature06385 PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Wu C, Hao H, Li L et al (2009) Preliminary investigation of the clinical significance of detecting circulating tumor cells enriched from lung cancer patients. J Thorac Oncol. 4(1):30–36. doi:10.1097/JTO.0b013e3181914125 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Pulmonary and Critical Care MedicineSidney Kimmel Medical College at Thomas Jefferson University and HospitalPhiladelphiaUSA
  2. 2.Division of Pulmonary and Critical Care MedicineFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations