, Volume 191, Issue 3, pp 257–263 | Cite as

Dust Is in the Air: Effects of Occupational Exposure to Mineral Dust on Lung Function in a 9-year Study

  • Karl Hochgatterer
  • Hanns Moshammer
  • Daniela HaluzaEmail author



Occupational mineral dust exposure is a well-known risk factor for numerous respiratory and systemic diseases. The aim of the present longitudinal study was to assess the influence of work-associated dust exposure on spirometric results. Furthermore, the impact of implementation of stricter limit values for occupational contact with quartz dust on lung function was evaluated.


Anthropometric data (age, gender, BMI), smoking behavior, and lung function parameters (FVC, FEV1, MEF50) from 7,204 medical examinations of 3,229 female and male workers during the years 2002–2010 were examined following Austrian standards for occupational medicine and the guidelines of the European Respiratory Society. Analysis of data was performed using models of multiple linear regression.


Lung function decrease over time was associated with smoking habits and duration of occupational dust exposure. Specifically, occupational quartz exposure negatively influenced the annual lung function parameters (FVC, −6.68 ml; FEV1, −6.71 ml; and MEF50, −16.15 ml/s, all p < 0.001). Thus, an overadditive effect of smoking and work-related contact with quartz was found regarding decline in MEF50 (p < 0.05). Implementation of stricter occupational limit values for dust exposure resulted in a highly significant deceleration of the annual decrease in respiratory function (p = 0.001).


Individual smoking habits and occupational dust exposure had a negative impact on lung function. To reduce the risk of loss of respiratory capacity, smoking cessation is especially recommended to workers exposed to quartz dust. Moreover, stricter limit values could prevent chronic occupational damage to the respiratory system.


Chronic obstructive pulmonary disease Smoking Quartz dust spirometry Occupational mineral dust exposure 



The authors thank David Jungwirth for expert assistance with graphic illustrations.

Conflict of interest

The authors have no competing interests.


  1. 1.
    Rushton L (2007) Chronic obstructive pulmonary disease and occupational exposure to silica. Rev Environ Health 22(4):255–272CrossRefPubMedGoogle Scholar
  2. 2.
    Guha N, Straif K, Benbrahim-Tallaa L (2011) The IARC Monographs on the carcinogenicity of crystalline silica. Med Lav 102(4):310–320PubMedGoogle Scholar
  3. 3.
    Vacek PM, Verma DK, Graham WG, Callas PW, Gibbs GW (2011) Mortality in Vermont granite workers and its association with silica exposure. Occup Environ Med 68(5):312–318. doi: 10.1136/oem.2009.054452 CrossRefPubMedGoogle Scholar
  4. 4.
    Mundt KA, Birk T, Parsons W, Borsch-Galetke E, Siegmund K, Heavner K, Guldner K (2011) Respirable crystalline silica exposure-response evaluation of silicosis morbidity and lung cancer mortality in the German porcelain industry cohort. J Occup Environ Med 53(3):282–289. doi: 10.1097/JOM.0b013e31820c2bff CrossRefPubMedGoogle Scholar
  5. 5.
    Chen W, Bochmann F, Sun Y (2007) Effects of work related confounders on the association between silica exposure and lung cancer: a nested case-control study among Chinese miners and pottery workers. Int Arch Occup Environ Health 80(4):320–326. doi: 10.1007/s00420-006-0137-0 CrossRefPubMedGoogle Scholar
  6. 6.
    Pelucchi C, Pira E, Piolatto G, Coggiola M, Carta P, La Vecchia C (2006) Occupational silica exposure and lung cancer risk: a review of epidemiological studies 1996–2005. Ann Oncol 17(7):1039–1050. doi: 10.1093/annonc/mdj125 CrossRefPubMedGoogle Scholar
  7. 7.
    Lacasse Y, Martin S, Gagne D, Lakhal L (2009) Dose-response meta-analysis of silica and lung cancer. Cancer Causes Control 20(6):925–933. doi: 10.1007/s10552-009-9296-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Erren TC, Morfeld P, Glende CB, Piekarski C, Cocco P (2011) Meta-analyses of published epidemiological studies, 1979–2006, point to open causal questions in silica-silicosis-lung cancer research. Med Lav 102(4):321–335PubMedGoogle Scholar
  9. 9.
    Chen W, Liu Y, Wang H, Hnizdo E, Sun Y, Su L, Zhang X, Weng S, Bochmann F, Hearl FJ, Chen J, Wu T (2012) Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: a cohort study. PLoS Med 9(4):e1001206. doi: 10.1371/journal.pmed.1001206 CrossRefPubMedGoogle Scholar
  10. 10.
    Calvert GM, Rice FL, Boiano JM, Sheehy JW, Sanderson WT (2003) Occupational silica exposure and risk of various diseases: an analysis using death certificates from 27 states of the United States. Occup Environ Med 60(2):122–129CrossRefPubMedGoogle Scholar
  11. 11.
    Preller L, van den Bosch LM, van den Brandt PA, Kauppinen T, Goldbohm A (2010) Occupational exposure to silica and lung cancer risk in the Netherlands. Occup Environ Med 67(10):657–663. doi: 10.1136/oem.2009.046326 CrossRefPubMedGoogle Scholar
  12. 12.
    Sauni R, Oksa P, Lehtimaki L, Toivio P, Palmroos P, Nieminen R, Moilanen E, Uitti J (2012) Increased alveolar nitric oxide and systemic inflammation markers in silica-exposed workers. Occup Environ Med 69(4):256–260. doi: 10.1136/oemed-2011-100347 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou T, Rong Y, Liu Y, Zhou Y, Guo J, Cheng W, Wang H, Chen W (2012) Association between proinflammatory responses of respirable silica dust and adverse health effects among dust-exposed workers. J Occup Environ Med 54(4):459–465. doi: 10.1097/JOM.0b013e31824525ab CrossRefPubMedGoogle Scholar
  14. 14.
    Melville AM, Pless-Mulloli T, Afolabi OA, Stenton SC (2010) COPD prevalence and its association with occupational exposures in a general population. Eur Respir J 36(3):488–493. doi: 10.1183/09031936.00038309 CrossRefPubMedGoogle Scholar
  15. 15.
    Steliga MA, Dresler CM (2011) Epidemiology of lung cancer: smoking, secondhand smoke, and genetics. Surg Oncol Clin N Am 20(4):605–618. doi: 10.1016/j.soc.2011.07.003 CrossRefPubMedGoogle Scholar
  16. 16.
    Kuempel ED, Wheeler MW, Smith RJ, Vallyathan V, Green FH (2009) Contributions of dust exposure and cigarette smoking to emphysema severity in coal miners in the United States. Am J Respir Crit Care Med 180(3):257–264. doi: 10.1164/rccm.200806-840OC CrossRefPubMedGoogle Scholar
  17. 17.
    Leung CC, Yew WW, Law WS, Tam CM, Leung M, Chung YW, Cheung KW, Chan KW, Fu F (2007) Smoking and tuberculosis among silicotic patients. Eur Respir J 29(4):745–750. doi: 10.1183/09031936.00134706 CrossRefPubMedGoogle Scholar
  18. 18.
    Kurihara N, Wada O (2004) Silicosis and smoking strongly increase lung cancer risk in silica-exposed workers. Ind Health 42(3):303–314CrossRefPubMedGoogle Scholar
  19. 19.
    Mets OM, Rooyackers J, van Amelsvoort-van de Vorst S, Mali WP, de Jong PA, Prokop M (2012) Increased micronodule counts are more common in occupationally silica dust-exposed smokers than in control smokers. J Occup Environ Med. doi: 10.1097/JOM.0b013e31824e6784 PubMedGoogle Scholar
  20. 20.
    Hochgatterer K, Hutter H, Moshammer H, Angerschmid C (2011) Lung function in dust-exposed workers. Pneumologie 65:459–464CrossRefPubMedGoogle Scholar
  21. 21.
    Scientific Committee on Occupational Exposure Limits (SCOEL) (2002) Recommendations from scientific committee on occupational exposure limits for silica, crystalline (respirable dust). Brussels: SCOEL committee on occupational exposure limits, report no. SCOEL/SSUM/94 finalGoogle Scholar
  22. 22.
    Grenzwerteverordung (2011) MAK-Werte für biologisch inerte Schwebstoffe. Available at Accessed 14 Mar 2013
  23. 23.
    Goodyear MD, Krleza-Jeric K, Lemmens T (2007) The declaration of Helsinki. BMJ 335(7621):624–625. doi: 10.1136/bmj.39339.610000.BE CrossRefPubMedGoogle Scholar
  24. 24.
    Verordnung des Bundesministers für Arbeit und Soziales über die Gesundheitsüberwachung am Arbeitsplatz (2006) BGBl.II Nr. 27/1997. Available at Accessed 14 Mar 2013
  25. 25.
    Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) General considerations for lung function testing. Eur Respir J 26(1):153–161. doi: 10.1183/09031936.05.00034505 CrossRefPubMedGoogle Scholar
  26. 26.
    Moshammer H, Hoek G, Luttmann-Gibson H, Neuberger MA, Antova T, Gehring U, Hruba F, Pattenden S, Rudnai P, Slachtova H, Zlotkowska R, Fletcher T (2006) Parental smoking and lung function in children: an international study. Am J Respir Crit Care Med 173(11):1255–1263. doi: 10.1164/rccm.200510-1552OC CrossRefPubMedGoogle Scholar
  27. 27.
    Lan CC, Su CP, Chou LL, Yang MC, Lim CS, Wu YK (2012) Association of body mass index with exercise cardiopulmonary responses in lung function-matched patients with chronic obstructive pulmonary disease. Heart Lung 41(4):374–381. doi: 10.1016/j.hrtlng.2012.02.010 CrossRefPubMedGoogle Scholar
  28. 28.
    Humerfelt S, Eide GE, Gulsvik A (1998) Association of years of occupational quartz exposure with spirometric airflow limitation in Norwegian men aged 30–46 years. Thorax 53(8):649–655CrossRefPubMedGoogle Scholar
  29. 29.
    Neghab M, Mohraz MH, Hassanzadeh J (2011) Symptoms of respiratory disease and lung functional impairment associated with occupational inhalation exposure to carbon black dust. J Occup Health 53(6):432–438CrossRefPubMedGoogle Scholar
  30. 30.
    Peters S, Kromhout H, Olsson AC, Wichmann HE, Bruske I, Consonni D, Landi MT, Caporaso N, Siemiatycki J, Richiardi L, Mirabelli D, Simonato L, Gustavsson P, Plato N, Jockel KH, Ahrens W, Pohlabeln H, Boffetta P, Brennan P, Zaridze D, Cassidy A, Lissowska J, Szeszenia-Dabrowska N, Rudnai P, Fabianova E, Forastiere F, Bencko V, Foretova L, Janout V, Stucker I, Dumitru RS, Benhamou S, Bueno-de-Mesquita B, Kendzia B, Pesch B, Straif K, Bruning T, Vermeulen R (2012) Occupational exposure to organic dust increases lung cancer risk in the general population. Thorax 67(2):111–116. doi: 10.1136/thoraxjnl-2011-200716 CrossRefPubMedGoogle Scholar
  31. 31.
    Checkoway H, Ray RM, Lundin JI, Astrakianakis G, Seixas NS, Camp JE, Wernli KJ, Fitzgibbons ED, Li W, Feng Z, Gao DL, Thomas DB (2011) Lung cancer and occupational exposures other than cotton dust and endotoxin among women textile workers in Shanghai. China Occup Environ Med 68(6):425–429. doi: 10.1136/oem.2010.059519 CrossRefGoogle Scholar
  32. 32.
    Tse LA, Yu IS, Au JS, Qiu H, Wang XR (2011) Silica dust, diesel exhaust, and painting work are the significant occupational risk factors for lung cancer in nonsmoking Chinese men. Br J Cancer 104(1):208–213. doi: 10.1038/sj.bjc.6606006 CrossRefPubMedGoogle Scholar
  33. 33.
    Mirabelli MC, London SJ, Charles LE, Pompeii LA, Wagenknecht LE (2012) Occupation and three-year incidence of respiratory symptoms and lung function decline: the ARIC Study. Respir Res 13:24. doi: 10.1186/1465-9921-13-24 CrossRefPubMedGoogle Scholar
  34. 34.
    Dahmann D, Bauer HD, Stoyke G (2008) Retrospective exposure assessment for respirable and inhalable dust, crystalline silica and arsenic in the former German uranium mines of SAG/SDAG Wismut. Int Arch Occup Environ Health 81(8):949–958. doi: 10.1007/s00420-007-0287-8 CrossRefPubMedGoogle Scholar
  35. 35.
    Sogl M, Taeger D, Pallapies D, Bruning T, Dufey F, Schnelzer M, Straif K, Walsh L, Kreuzer M (2012) Quantitative relationship between silica exposure and lung cancer mortality in German uranium miners, 1946–2003. Br J Cancer 107(7):1188–1194. doi: 10.1038/bjc.2012.374 CrossRefPubMedGoogle Scholar
  36. 36.
    Griffith DE, Garcia JG, Dodson RF, Levin JL, Kronenberg RS (1993) Airflow obstruction in nonsmoking, asbestos- and mixed dust-exposed workers. Lung 171(4):213–224CrossRefPubMedGoogle Scholar
  37. 37.
    Boggia B, Farinaro E, Grieco L, Lucariello A, Carbone U (2008) Burden of smoking and occupational exposure on etiology of chronic obstructive pulmonary disease in workers of Southern Italy. J Occup Environ Med 50(3):366–370. doi: 10.1097/JOM.0b013e318162f601 CrossRefPubMedGoogle Scholar
  38. 38.
    Fell AK, Sikkeland LI, Svendsen MV, Kongerud J (2010) Airway inflammation in cement production workers. Occup Environ Med 67(6):395–400. doi: 10.1136/oem.2009.047852 CrossRefPubMedGoogle Scholar
  39. 39.
    Harber P, Tashkin DP, Simmons M, Crawford L, Hnizdo E, Connett J (2007) Effect of occupational exposures on decline of lung function in early chronic obstructive pulmonary disease. Am J Respir Crit Care Med 176(10):994–1000. doi: 10.1164/rccm.200605-730OC CrossRefPubMedGoogle Scholar
  40. 40.
    Jaen A, Zock JP, Kogevinas M, Ferrer A, Marin A (2006) Occupation, smoking, and chronic obstructive respiratory disorders: a cross sectional study in an industrial area of Catalonia. Spain Environ Health 5:2. doi: 10.1186/1476-069X-5-2 CrossRefGoogle Scholar
  41. 41.
    Rushton L (2007) Chronic obstructive pulmonary disease and occupational exposure to silica. Rev Environ Health 22(4):255–272CrossRefPubMedGoogle Scholar
  42. 42.
    Hnizdo E, Vallyathan V (2003) Chronic obstructive pulmonary disease due to occupational exposure to silica dust: a review of epidemiological and pathological evidence. Occup Environ Med 60(4):237–243CrossRefPubMedGoogle Scholar
  43. 43.
    Ulvestad B, Lund MB (2003) Increased risk of chronic obstructive pulmonary disease among tunnel construction workers. Tidsskr Nor Laegeforen 123(16):2292–2295PubMedGoogle Scholar
  44. 44.
    Weinmann S, Vollmer WM, Breen V, Heumann M, Hnizdo E, Villnave J, Doney B, Graziani M, McBurnie MA, Buist AS (2008) COPD and occupational exposures: a case-control study. J Occup Environ Med 50(5):561–569. doi: 10.1097/JOM.0b013e3181651556 CrossRefPubMedGoogle Scholar
  45. 45.
    Fenoglio I, Fonsato S, Fubini B (2003) Reaction of cysteine and glutathione (GSH) at the freshly fractured quartz surface: a possible role in silica-related diseases? Free Radic Biol Med 35(7):752–762CrossRefPubMedGoogle Scholar
  46. 46.
    Christensen SW, Bonde JP, Omland O (2008) A prospective study of decline in lung function in relation to welding emissions. J Occup Med Toxicol 3:6. doi: 10.1186/1745-6673-3-6 CrossRefPubMedGoogle Scholar
  47. 47.
    Jafari AJ, Assari MJ (2004) Respiratory effects from work-related exposure to welding fumes in Hamadan. Iran Arch Environ Health 59(3):116–120. doi: 10.3200/AEOH.59.3.116-120 CrossRefGoogle Scholar
  48. 48.
    Loukzadeh Z, Sharifian SA, Aminian O, Shojaoddiny-Ardekani A (2009) Pulmonary effects of spot welding in automobile assembly. Occup Med (Lond) 59(4):267–269. doi: 10.1093/occmed/kqp033 CrossRefGoogle Scholar
  49. 49.
    Szram J, Schofield SJ, Cosgrove MP, Cullinan P (2012) Welding, longitudinal lung function decline and chronic respiratory symptoms: a systematic review of cohort studies. Eur Respir J. doi: 10.1183/09031936.00206011 PubMedGoogle Scholar
  50. 50.
    Stipe CB, Miller AL, Brown J, Guevara E, Cauda E (2012) Evaluation of Laser-Induced Breakdown Spectroscopy (LIBS) for measurement of silica on filter samples of coal dust. Appl Spectrosc 66(11):1286–1293. doi: 10.1366/12-06671 CrossRefPubMedGoogle Scholar
  51. 51.
    Miller AL, Drake PL, Murphy NC, Noll JD, Volkwein JC (2012) Evaluating portable infrared spectrometers for measuring the silica content of coal dust. J Environ Monit 14(1):48–55. doi: 10.1039/c1em10678c CrossRefPubMedGoogle Scholar
  52. 52.
    Nkosi TM, Parent ME, Siemiatycki J, Rousseau MC (2012) Socioeconomic position and lung cancer risk: how important is the modeling of smoking? Epidemiology 23(3):377–385. doi: 10.1097/EDE.0b013e31824d0548 CrossRefPubMedGoogle Scholar
  53. 53.
    Dimich-Ward H, Beking K, DyBuncio A, Chan-Yeung M, Du W, Karlen B, Camp PG, Kennedy SM (2012) Occupational exposure influences on gender differences in respiratory health. Lung 190(2):147–154. doi: 10.1007/s00408-011-9344-x CrossRefPubMedGoogle Scholar
  54. 54.
    Johannessen A, Eagan TM, Omenaas ER, Bakke PS, Gulsvik A (2010) Socioeconomic risk factors for lung function decline in a general population. Eur Respir J 36(3):480–487. doi: 10.1183/09031936.00186509 CrossRefPubMedGoogle Scholar
  55. 55.
    Bergdahl IA, Toren K, Eriksson K, Hedlund U, Nilsson T, Flodin R, Jarvholm B (2004) Increased mortality in COPD among construction workers exposed to inorganic dust. Eur Respir J 23(3):402–406CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Karl Hochgatterer
    • 1
  • Hanns Moshammer
    • 2
  • Daniela Haluza
    • 2
    Email author
  1. 1.Centre of Occupational Health Perg GmbHPergAustria
  2. 2.Institute of Environmental Health, Center for Public HealthMedical University of ViennaViennaAustria

Personalised recommendations