, Volume 190, Issue 3, pp 251–262 | Cite as

Therapeutic Liposomal Dry Powder Inhalation Aerosols for Targeted Lung Delivery

  • Lauren Willis
  • Don HayesJr.
  • Heidi M. MansourEmail author


Therapeutic liposomal powders (i.e., lipospheres and proliposomes) for dry powder inhalation aerosol delivery, formulated with phospholipids similar to endogenous lung surfactant, offer unique opportunities in pulmonary nanomedicine while offering controlled release and enhanced stability. Many pulmonary diseases such as lung cancer, tuberculosis (TB), cystic fibrosis (CF), bacterial and fungal lung infections, asthma, and chronic obstructive pulmonary disease (COPD) could greatly benefit from this type of pulmonary nanomedicine approach that can be delivered in a targeted manner by dry powder inhalers (DPIs). These delivery systems may require smaller doses for efficacy, exhibit reduced toxicity, fewer side effects, controlled drug release over a prolonged time period, and increased formulation stability as inhaled powders. This state-of-the-art review presents these novel aspects in depth.


Pulmonary nanomedicine Asthma Chronic obstructive pulmonary disease Cystic fibrosis Tuberculosis Lung cancer 


Conflict of interest

The authors have no conflicts of interest or financial ties to disclose.


  1. 1.
    Mansour HM, Rhee YS, Wu X (2009) Nanomedicine in pulmonary delivery. Int J Nanomedicine 4:299–319PubMedCrossRefGoogle Scholar
  2. 2.
    Desai TR, Wong JP, Hancock REW, Finlay WH (2002) A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling. J Pharm Sci 91(2):482–491PubMedCrossRefGoogle Scholar
  3. 3.
    Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6(1):67–74PubMedCrossRefGoogle Scholar
  4. 4.
    Hickey AJ, Mansour HM (2009) Chapter 5: delivery of drugs by the pulmonary route. In: Florence AT, Siepmann J (eds) Modern pharmaceutics, vol 2, 5th edn. Taylor and Francis, New York, pp 191–219Google Scholar
  5. 5.
    Hickey AJ, Mansour HM (2008) Chapter 43: formulation challenges of powders for the delivery of small molecular weight molecules as aerosols. In: Rathbone MJ, Hadgraft J, Roberts MS, Lane M (eds) Modified-release drug delivery technology, vol 2, 2nd edn. Informa Healthcare, New York, pp 573–602Google Scholar
  6. 6.
    Evora C, Soriano I, Rogers RA, Shakesheff KN, Hanes J, Langer R (1998) Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine. J Control Release 51(2–3):143–152PubMedCrossRefGoogle Scholar
  7. 7.
    Wu X, Mansour HM (2011) Nanopharmaceuticals II: application of nanoparticles and nanocarrier systems in pharmaceutics and nanomedicine. Int J Nanotechnol 8(1/2):115–145CrossRefGoogle Scholar
  8. 8.
    Rhee YS, Mansour HM (2011) Nanopharmaceuticals I: nanocarrier systems in drug delivery. Int J Nanotechnol 8(1/2):84–114CrossRefGoogle Scholar
  9. 9.
    Mansour HM, Rhee YS, Park CW, DeLuca PP (2011) Chapter 9: lipid nanoparticulate drug delivery and nanomedicine. In: Moghis A (ed) Lipids in nanotechnology, 1st edn. American Oil Chemists Society (AOCS) Press, Chicago, pp 221–268Google Scholar
  10. 10.
    Zhang J, Wu L, Chan HK, Watanabe W (2011) Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 63(6):441–455PubMedCrossRefGoogle Scholar
  11. 11.
    Bi R, Zhang N (2007) Liposomes as a carrier for pulmonary delivery of peptides and proteins. J Biomed Nanotechnol 3(4):332–341CrossRefGoogle Scholar
  12. 12.
    Dandekar P, Venkataraman C, Mehra A (2010) Pulmonary targeting of nanoparticle drug matrices. J Aerosol Med Pulm Drug Deliv 23(6):343–353PubMedCrossRefGoogle Scholar
  13. 13.
    Hajos F, Stark B, Hensler S, Prassl R, Mosgoeller W (2008) Inhalable liposomal formulation for vasoactive intestinal peptide. Int J Pharm 357(1–2):286–294PubMedCrossRefGoogle Scholar
  14. 14.
    Lu D, Hickey AJ (2005) Liposomal dry powders as aerosols for pulmonary delivery of proteins. AAPS PharmSciTech 6(4):E641–E648PubMedCrossRefGoogle Scholar
  15. 15.
    Bailey MM, Berkland CJ (2009) Nanoparticle formulations in pulmonary drug delivery. Med Res Rev 29(1):196–212PubMedCrossRefGoogle Scholar
  16. 16.
    Pison U, Welte T, Giersig M, Groneberg DA (2006) Nanomedicine for respiratory diseases. Eur J Pharmacol 533(1–3):341–350PubMedCrossRefGoogle Scholar
  17. 17.
    Kurmi BD, Kayat J, Gajbhiye V, Tekade RK, Jain NK (2010) Micro- and nanocarrier-mediated lung targeting. Expert Opin Drug Deliv 7(7):781–794PubMedCrossRefGoogle Scholar
  18. 18.
    Dailey LA, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M, Kissel T, Seeger W (2006) Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol 215(1):100–108PubMedCrossRefGoogle Scholar
  19. 19.
    Perrie Y, Rades T (2010) Pharmaceutics—drug delivery and targeting. Pharmaceutical Press, LondonGoogle Scholar
  20. 20.
    Mansour HM, Zografi G (2007) The relationship between water vapor absorption and desorption by phospholipids and bilayer phase transitions. J Pharm Sci 96(2):377–396PubMedCrossRefGoogle Scholar
  21. 21.
    Mansour HM, Damodaran S, Zografi G (2008) Characterization of the in situ structural and interfacial properties of the cationic hydrophobic heteropolypeptide, KL4, in lung surfactant bilayer and monolayer models at the air-water interface: implications for pulmonary surfactant delivery. Mol Pharm 5(5):681–695PubMedCrossRefGoogle Scholar
  22. 22.
    Mansour HM, Wang DS, Chen CS, Zografi G (2001) Comparison of bilayer and monolayer properties of phospholipid systems containing dipalmitoylphosphatidylglycerol and dipalmitoylphosphatidylinositol. Langmuir 17(21):6622–6632CrossRefGoogle Scholar
  23. 23.
    Mansour HM, Zografi G (2007) Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air–water interface. Langmuir 23(7):3809–3819PubMedCrossRefGoogle Scholar
  24. 24.
    Changsan N, Chan HK, Separovic F, Srichana T (2009) Physicochemical characterization and stability of rifampicin liposome dry powder formulations for inhalation. J Pharm Sci 98(2):628–639PubMedCrossRefGoogle Scholar
  25. 25.
    Darwis Y, Kellaway IW (2002) The lyophilisation and aerosolisation of liposomes for pulmonary drug administration. STP Pharma Sci 12(2):91–96Google Scholar
  26. 26.
    Gibbons AM, McElvaney NG, Cryan SA (2010) A dry powder formulation of liposome-encapsulated recombinant secretory leukocyte protease inhibitor (rSLPI) for inhalation: preparation and characterisation. AAPS PharmSciTech 11(3):1411–1421PubMedCrossRefGoogle Scholar
  27. 27.
    Gibbons AM, McElvaney NG, Taggart CC, Cryan SA (2009) Delivery of rSLPI in a liposomal carrier for inhalation provides protection against cathepsin L degradation. J Microencapsul 26(6):513–522PubMedCrossRefGoogle Scholar
  28. 28.
    El-Ridy MS, Mostafa DM, Shehab A, Nasr EA, Abd El-Alim S (2007) Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis. Int J Pharm 330(1–2):82–88PubMedCrossRefGoogle Scholar
  29. 29.
    Wyde PR, Six HR, Wilson SZ, Gilbert BE, Knight V (1988) Activity against rhinoviruses, toxicity, and delivery in aerosol of enviroxime in liposomes. Antimicrob Agents Chemother 32(6):890–895PubMedGoogle Scholar
  30. 30.
    Goldbach P, Brochart H, Stamm A (1993) Spray-drying of liposomes for a pulmonary administration. 1. Chemical stability of phospholipids. Drug Dev Ind Pharm 19(19):2611–2622CrossRefGoogle Scholar
  31. 31.
    Goldbach P, Brochart H, Stamm A (1993) Spray-drying of liposomes for a pulmonary administration. 2. Retention of encapsulated materials. Drug Dev Ind Pharm 19(19):2623–2636CrossRefGoogle Scholar
  32. 32.
    Alves GP, Santana MHA (2004) Phospholipid dry powders produced by spray drying processing: structural, thermodynamic and physical properties. Powder Technol 145(2):139–148CrossRefGoogle Scholar
  33. 33.
    Taylor KMG, Farr SJ (1993) Liposomes for drug delivery to the respiratory tract. Drug Dev Ind Pharm 19(1–2):123–142CrossRefGoogle Scholar
  34. 34.
    Abu-Dahab R, Schafer UF, Lehr CM (2001) Lectin-functionalized liposomes for pulmonary drug delivery: effect of nebulization on stability and bioadhesion. Eur J Pharm Sci 14(1):37–46PubMedCrossRefGoogle Scholar
  35. 35.
    Canonico AE, Plitman JD, Conary JT, Meyrick BO, Brigham KL (1994) No lung toxicity after repeated aerosol or intravenous delivery of plasmid–cationic liposome complexes. J Appl Physiol 77(1):415–419PubMedGoogle Scholar
  36. 36.
    Saari M, Vidgren MT, Koskinen MO, Turjanmaa VMH, Nieminen MM (1999) Pulmonary distribution and clearance of two beclomethasone liposome formulations in healthy volunteers. Int J Pharm 181(1):1–9PubMedCrossRefGoogle Scholar
  37. 37.
    Thomas DA, Myers MA, Wichert B, Schreier H, Gonzalezrothi RJ (1991) Acute effects of liposome aerosol inhalation on pulmonary-function in healthy-human volunteers. Chest 99(5):1268–1270PubMedCrossRefGoogle Scholar
  38. 38.
    Wijagkanalan W, Higuchi Y, Kawakami S, Teshima M, Sasaki H, Hashida M (2008) Enhanced anti-inflammation of inhaled dexamethasone palmitate using mannosylated liposomes in an endotoxin-induced lung inflammation model. Mol Pharmacol 74(5):1183–1192PubMedCrossRefGoogle Scholar
  39. 39.
    Albasarah YY, Somavarapu S, Stapleton P, Taylor KMG (2010) Chitosan-coated antifungal formulations for nebulisation. J Pharm Pharmacol 62(7):821–828PubMedGoogle Scholar
  40. 40.
    Patton JS, Fishburn CS, Weers JG (2004) The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc 1(4):338–344PubMedCrossRefGoogle Scholar
  41. 41.
    Chimote G, Banerjee R (2009) Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. J Biomed Mater Res A 89A(2):281–292CrossRefGoogle Scholar
  42. 42.
    Barker SA, Taylor KMG, Short MD (1994) The deposition and clearance of liposome-entrapped Tc-99m-DTPA in the human respiratory tract. Int J Pharm 102(1–3):159–165CrossRefGoogle Scholar
  43. 43.
    Myers MA, Thomas DA, Straub L, Soucy DW, Niven RW, Kaltenbach M, Hood CI, Schreier H, Gonzalezrothi RJ (1993) Pulmonary effects of chronic exposure to liposome aerosols in mice. Exp Lung Res 19(1):1–19PubMedCrossRefGoogle Scholar
  44. 44.
    Misra A, Jinturkar K, Patel D, Lalani J, Chougule M (2009) Recent advances in liposomal dry powder formulations: preparation and evaluation. Expert Opin Drug Deliv 6(1):71–89PubMedCrossRefGoogle Scholar
  45. 45.
    El-Gendy N, Gorman EM, Munson EJ, Berkland C (2009) Budesonide nanoparticle agglomerates as dry powder aerosols with rapid dissolution. J Pharm Sci 98(8):2731–2746PubMedCrossRefGoogle Scholar
  46. 46.
    Naikwade SR, Bajaj AN, Gurav P, Gatne MM, Singh Soni P (2009) Development of budesonide microparticles using spray-drying technology for pulmonary administration: design, characterization, in vitro evaluation, and in vivo efficacy study. AAPS PharmSciTech 10(3):993–1012PubMedCrossRefGoogle Scholar
  47. 47.
    Joshi M, Misra AN (2001) Pulmonary disposition of budesonide from liposomal dry powder inhaler. Methods Find Exp Clin Pharmacol 23(10):531–536PubMedCrossRefGoogle Scholar
  48. 48.
    Saari SM, Vidgren MT, Herrala J, Turjanma VMH, Koskinen MO, Nieminen MM (2002) Possibilities of formoterol to enhance the peripheral lung deposition of the inhaled liposome corticosteroids. Respir Med 96(12):999–1005PubMedCrossRefGoogle Scholar
  49. 49.
    Sharafkhaneh A, Mattewal AS, Abraham VM, Dronavalli G, Hanania NA (2010) Budesonide/formoterol combination in COPD: a US perspective. Int J Chron Obstr Pulm Dis 5:357–366CrossRefGoogle Scholar
  50. 50.
    Saari SM, Vidgren MT, Koskinen MO, Turjanmaa VM, Waldrep JC, Nieminen MM (1998) Regional lung deposition and clearance of 99mTc-labeled beclomethasone-DLPC liposomes in mild and severe asthma. Chest 113(6):1573–1579PubMedCrossRefGoogle Scholar
  51. 51.
    Huang WH, Yang ZJ, Wu H, Wong YF, Zhao ZZ, Liu L (2010) Development of liposomal salbutamol sulfate dry powder inhaler formulation. Biol Pharm Bull 33(3):512–517PubMedCrossRefGoogle Scholar
  52. 52.
    Joshi M, Misra A (2001) Dry powder inhalation of liposomal ketotifen fumarate: formulation and characterization. Int J Pharm 223(1–2):15–27PubMedCrossRefGoogle Scholar
  53. 53.
    Joshi M, Misra A (2003) Disposition kinetics of ketotifen from liposomal dry powder for inhalation in rat lung. Clin Exp Pharmacol Physiol 30(3):153–156PubMedCrossRefGoogle Scholar
  54. 54.
    Park CW, Hayes DJ, Mansour HM (2011) Pulmonary inhalation aerosols for targeted antibiotics drug delivery. Eur Pharm Rev 16(1):32–36Google Scholar
  55. 55.
    Gilbert BE (1996) Liposomal aerosols in the management of pulmonary infections. J Aerosol Med 9(1):111–122PubMedCrossRefGoogle Scholar
  56. 56.
    Zaru M, Sinico C, De Logu A, Caddeo C, Lai F, Manca ML, Fadda AM (2009) Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: in vitro and in vivo evaluation. J Liposome Res 19(1):68–76PubMedCrossRefGoogle Scholar
  57. 57.
    Vyas SP, Kannan ME, Jain S, Mishra V, Singh P (2004) Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm 269(1):37–49PubMedCrossRefGoogle Scholar
  58. 58.
    Vyas SP, Khatri K (2007) Liposome-based drug delivery to alveolar macrophages. Expert Opin Drug Deliv 4(2):95–99PubMedCrossRefGoogle Scholar
  59. 59.
    Vyas SP, Quraishi S, Gupta S, Jaganathan KS (2005) Aerosolized liposome-based delivery of amphotericin B to alveolar macrophages. Int J Pharm 296(1–2):12–25PubMedCrossRefGoogle Scholar
  60. 60.
    Corcoran TE, Venkataramanan R, Mihelc KM, Marcinkowski AL, Ou J, McCook BM, Weber L, Carey ME, Paterson DL, Pilewski JM, McCurry KR, Husain S (2006) Aerosol deposition of lipid complex amphotericin-B (Abelcet) in lung transplant recipients. Am J Transpl 6(11):2765–2773CrossRefGoogle Scholar
  61. 61.
    Allen SD, Sorensen KN, Nejdl MJ, Durrant C, Proffit RT (1994) Prophylactic efficacy of aerosolized liposomal (AmBisome) and non-liposomal (Fungizone) amphotericin B in murine pulmonary aspergillosis. J Antimicrob Chemother 34(6):1001–1013PubMedCrossRefGoogle Scholar
  62. 62.
    Castagnola E, Moresco L, Cappelli B, Cuzzubbo D, Moroni C, Lanino E, Faraci M (2007) Nebulized liposomal amphotericin B and combined systemic antifungal therapy for the treatment of severe pulmonary aspergillosis after allogeneic hematopoietic stem cell transplant for a fatal mitochondrial disorder. J Chemother 19(3):339–342PubMedGoogle Scholar
  63. 63.
    Lowry CM, Marty FM, Vargas SO, Lee JT, Fiumara K, Deykin A, Baden LR (2007) Safety of aerosolized liposomal versus deoxycholate amphotericin B formulations for prevention of invasive fungal infections following lung transplantation: a retrospective study. Transpl Infect Dis 9(2):121–125PubMedCrossRefGoogle Scholar
  64. 64.
    Slobbe L, Boersma E, Rijnders BJ (2008) Tolerability of prophylactic aerosolized liposomal amphotericin-B and impact on pulmonary function: data from a randomized placebo-controlled trial. Pulm Pharmacol Ther 21(6):855–859PubMedCrossRefGoogle Scholar
  65. 65.
    Rijnders BJ, Cornelissen JJ, Slobbe L, Becker MJ, Doorduijn JK, Hop WCJ, Ruijgrok EJ, Lowenberg B, Vulto A, Lugtenburg PJ, de Marie S (2008) Aerosolized liposomal amphotericin B for the prevention of invasive pulmonary aspergillosis during prolonged neutropenia: a randomized, placebo-controlled trial. Clin Infect Dis 46(9):1401–1408PubMedCrossRefGoogle Scholar
  66. 66.
    Takazono T, Izumikawa K, Mihara T, Kosai K, Saijo T, Imamura Y, Miyazaki T, Seki M, Kakeya H, Yamamoto Y, Yanagihara K, Kohno S (2009) Efficacy of combination antifungal therapy with intraperitoneally administered micafungin and aerosolized liposomal amphotericin b against murine invasive pulmonary aspergillosis. Antimicrob Agents Chemother 53(8):3508–3510PubMedCrossRefGoogle Scholar
  67. 67.
    Shah SP, Misra A (2004) Development of liposomal amphotericin B dry powder inhaler formulation. Drug Deliv 11(4):247–253PubMedCrossRefGoogle Scholar
  68. 68.
    DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM (2008) Pharmacotherapy: a pathophysiological approach, 7th edn. McGraw-Hill Medical, New YorkGoogle Scholar
  69. 69.
    Desjardins A, Chen T, Khalil H, Sayasith K, Lagace J (2002) Differential behaviour of fluid liposomes toward mammalian epithelial cells and bacteria: restriction of fusion to bacteria. J Drug Target 10(1):47–54PubMedCrossRefGoogle Scholar
  70. 70.
    McLachlan G, Davidson DJ, Stevenson BJ, Dickinson P, Davidson-Smith H, Dorin JR, Porteous DJ (1995) Evaluation in vitro and in vivo of cationic liposome-expression construct complexes for cystic fibrosis gene therapy. Gene Ther 2(9):614–622PubMedGoogle Scholar
  71. 71.
    Tagalakis AD, McAnulty RJ, Devaney J, Bottoms SE, Wong JB, Elbs M, Writer MJ, Hailes HC, Tabor AB, O’Callaghan C, Jaffe A, Hart SL (2008) A receptor-targeted nanocomplex vector system optimized for respiratory gene transfer. Mol Ther 16(5):907–915PubMedCrossRefGoogle Scholar
  72. 72.
    Okusanya OO, Bhavnani SM, Hammel J, Minic P, Dupont LJ, Forrest A, Mulder GJ, Mackinson C, Ambrose PG, Gupta R (2009) Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother 53(9):3847–3854PubMedCrossRefGoogle Scholar
  73. 73.
    Weers J, Metzheiser B, Taylor G, Warren S, Meers P, Perkins WR (2009) A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J Aerosol Med Pulm Drug Deliv 22(2):131–138PubMedCrossRefGoogle Scholar
  74. 74.
    Heijerman H, Westerman E, Conway S, Touw D, Doring G, Consensus Working Group (2009) Inhaled medication and inhalation devices for lung disease in patients with cystic fibrosis: a European consensus. J Cyst Fibros 8(5):295–315PubMedCrossRefGoogle Scholar
  75. 75.
    Adi H, Young PM, Chan HK, Agus H, Traini D (2010) Co-spray-dried mannitol-ciprofloxacin dry powder inhaler formulation for cystic fibrosis and chronic obstructive pulmonary disease. Eur J Pharm Sci 40(3):239–247PubMedCrossRefGoogle Scholar
  76. 76.
    Lacy CF, Armstrong LL, Goldman MP, Lance LL (2008) Drug information handbook, 17th edn. Lexi-Comp Inc., HudsonGoogle Scholar
  77. 77.
    Everard ML, Devadason SG, Sunderland VB, Le Souef PN (1995) An alternative aerosol delivery system for amiloride. Thorax 50(5):517–519PubMedCrossRefGoogle Scholar
  78. 78.
    Chougule MB, Padhi BK, Misra A (2006) Nano-liposomal dry powder inhaler of amiloride hydrochloride. J Nanosci Nanotechnol 6(9–10):3001–3009PubMedCrossRefGoogle Scholar
  79. 79.
    Chougule MB, Padhi BK, Misra AN (2008) Development of spray dried liposomal dry powder inhaler of Dapsone. AAPS PharmSciTech 9(1):47–53PubMedCrossRefGoogle Scholar
  80. 80.
    Knoop C, Haverich A, Fischer S (2004) Immunosuppressive therapy after human lung transplantation. Eur Respir J 23(1):159–171PubMedCrossRefGoogle Scholar
  81. 81.
    Chougule M, Padhi B, Misra A (2007) Nano-liposomal dry powder inhaler of tacrolimus: preparation, characterization, and pulmonary pharmacokinetics. Int J Nanomedicine 2(4):675–688PubMedGoogle Scholar
  82. 82.
    Waldrep JC, Scherer PW, Keyhani K, Knight V (1993) Cyclosporine-a liposome aerosol—particle-size and calculated respiratory deposition. Int J Pharm 97(1–3):205–212CrossRefGoogle Scholar
  83. 83.
    Waldrep JC, Arppe J, Jansa KA, Vidgren M (1998) Experimental pulmonary delivery of cyclosporin A by liposome aerosol. Int J Pharm 160(2):239–249CrossRefGoogle Scholar
  84. 84.
    Behr J, Zimmermann G, Baumgartner R, Leuchte H, Neurohr C, Brand P, Herpich C, Sommerer K, Seitz J, Menges G, Tillmanns S, Keller M, Munich Lung Transplant Group (2009) Lung deposition of a liposomal cyclosporine a inhalation solution in patients after lung transplantation. J Aerosol Med Pulm Drug Deliv 22(2):121–129PubMedCrossRefGoogle Scholar
  85. 85.
    Waldrep JC, Arppe J, Jansa KA, Knight V (1997) High dose cyclosporin A and budesonide-liposome aerosols. Int J Pharm 152(1):27–36CrossRefGoogle Scholar
  86. 86.
    Gilbert BE, Wilson SZ, Garcon NM, Wyde PR, Knight V (1993) Characterization and administration of cyclosporine liposomes as a small-particle aerosol. Transplantation 56(4):974–977PubMedCrossRefGoogle Scholar
  87. 87.
    Koshkina NV, Golunski E, Roberts LE, Gilbert BE, Knight V (2004) Cyclosporin A aerosol improves the anticancer effect of paclitaxel aerosol in mice. J Aerosol Med 17(1):7–14PubMedCrossRefGoogle Scholar
  88. 88.
    Ross HJ, Canada AL, Slater LM (1997) Cyclosporine A enhances paclitaxel toxicity against leukemia and respiratory epithelial cancers. Clin Cancer Res 3(1):57–62PubMedGoogle Scholar
  89. 89.
    Xu J, Kochanek KD, Murphy SL, Tejada-Vera B (2007) Deaths: final data for 2007. Natl Vital Stat Rep 58(19):1–135Google Scholar
  90. 90.
    Gautam A, Waldrep JC, Densmore CL, Koshkina N, Melton S, Roberts L, Gilbert B, Knight V (2002) Growth inhibition of established B16–F10 lung metastases by sequential aerosol delivery of p53 gene and 9-nitrocamptothecin. Gene Ther 9(5):353–357PubMedCrossRefGoogle Scholar
  91. 91.
    Koshkina NV, Waldrep JC, Roberts LE, Golunski E, Melton S, Knight V (2001) Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin Cancer Res 7(10):3258–3262PubMedGoogle Scholar
  92. 92.
    Zou Y, Zong G, Ling YH, Perez-Soler R (2000) Development of cationic liposome formulations for intratracheal gene therapy of early lung cancer. Cancer Gene Ther 7(5):683–696PubMedCrossRefGoogle Scholar
  93. 93.
    Kalantarian P, Najafabadi AR, Haririan I, Vatanara A, Yamini Y, Darabi M, Gilani K (2010) Preparation of 5-fluorouracil nanoparticles by supercritical antisolvents for pulmonary delivery. Int J Nanomedicine 5:763–770PubMedCrossRefGoogle Scholar
  94. 94.
    Gagnadoux F, Hureaux J, Vecellio L, Urban T, Le Pape A, Valo I, Montharu J, Leblond V, Boisdron-Celle M, Lerondel S, Majoral C, Diot P, Racineux JL, Lemarie E (2008) Aerosolized chemotherapy. J Aerosol Med Pulm Drug Deliv 21(1):61–69PubMedCrossRefGoogle Scholar
  95. 95.
    Weinstein JN, Leserman LD (1984) Liposomes as drug carriers in cancer chemotherapy. Pharmacol Ther 24(2):207–233PubMedCrossRefGoogle Scholar
  96. 96.
    Parthasarathy R, Gilbert B, Mehta K (1999) Aerosol delivery of liposomal all-trans-retinoic acid to the lungs. Cancer Chemother Pharmacol 43(4):277–283PubMedCrossRefGoogle Scholar
  97. 97.
    Carvalho TC, Carvalho SR, McConville JT (2011) Formulations for pulmonary administration of anticancer agents to treat lung malignancies. J Aerosol Med Pulm Drug Deliv 24(2):61–80PubMedCrossRefGoogle Scholar
  98. 98.
    Zakharian TY, Seryshev A, Sitharaman B, Gilbert BE, Knight V, Wilson LJ (2005) A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc 127(36):12508–12509PubMedCrossRefGoogle Scholar
  99. 99.
    Wittgen BP, Kunst PW, van der Born K, van Wijk AW, Perkins W, Pilkiewicz FG, Perez-Soler R, Nicholson S, Peters GJ, Postmus PE (2007) Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res 13(8):2414–2421PubMedCrossRefGoogle Scholar
  100. 100.
    Debs RJ, Straubinger RM, Brunette EN, Lin JM, Lin EJ, Montgomery AB, Friend DS, Papahadjopoulos DP (1987) Selective enhancement of pentamidine uptake in the lung by aerosolization and delivery in liposomes. Am Rev Respir Dis 135(3):731–737PubMedGoogle Scholar
  101. 101.
    Koshkina NV, Kleinerman ES, Waldrep C, Jia SF, Worth LL, Gilbert BE, Knight V (2000) 9-Nitrocamptothecin liposome aerosol treatment of melanoma and osteosarcoma lung metastases in mice. Clin Cancer Res 6(7):2876–2880PubMedGoogle Scholar
  102. 102.
    Lawson KA, Anderson K, Snyder RM, Simmons-Menchaca M, Atkinson J, Sun LZ, Bandyopadhyay A, Knight V, Gilbert BE, Sanders BG, Kline K (2004) Novel vitamin E analogue and 9-nitro-camptothecin administered as liposome aerosols decrease syngeneic mouse mammary tumor burden and inhibit metastasis. Cancer Chemother Pharmacol 54(5):421–431PubMedCrossRefGoogle Scholar
  103. 103.
    Verschraegen CF, Gilbert BE, Loyer E, Huaringa A, Walsh G, Newman RA, Knight V (2004) Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(s)-camptothecin in patients with advanced pulmonary malignancies. Clin Cancer Res 10(7):2319–2326PubMedCrossRefGoogle Scholar
  104. 104.
    Chen J, Ping QN, Guo JX, Chu XZ, Song MM (2006) Effect of phospholipid composition on characterization of liposomes containing 9-nitrocamptothecin. Drug Dev Ind Pharm 32(6):719–726PubMedCrossRefGoogle Scholar
  105. 105.
    Knight V, Koshkina NV, Waldrep JC, Giovanella BC, Gilbert BE (1999) Anticancer effect of 9-nitrocamptothecin liposome aerosol on human cancer xenografts in nude mice. Cancer Chemother Pharmacol 44(3):177–186PubMedCrossRefGoogle Scholar
  106. 106.
    Otterson GA, Villalona-Calero MA, Hicks W, Pan X, Ellerton JA, Gettinger SN, Murren JR (2010) Phase I/II study of inhaled doxorubicin combined with platinum-based therapy for advanced non-small cell lung cancer. Clin Cancer Res 16(8):2466–2473PubMedCrossRefGoogle Scholar
  107. 107.
    Azarmi S, Tao X, Chen H, Wang Z, Finlay WH, Lobenberg R, Roa WH (2006) Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm 319(1–2):155–161PubMedCrossRefGoogle Scholar
  108. 108.
    Latimer P, Menchaca M, Snyder RM, Yu WP, Gilbert BE, Sanders BG, Kline K (2009) Aerosol delivery of liposomal formulated paclitaxel and vitamin E analog reduces murine mammary tumor burden and metastases. Exp Biol Med 234(10):1244–1252CrossRefGoogle Scholar
  109. 109.
    World Health Organization (2011) Global tuberculosis control. Accessed 10 Dec 2011
  110. 110.
    Muttil P, Kaur J, Kumar K, Yadav AB, Sharma R, Misra A (2007) Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur J Pharm Sci 32(2):140–150PubMedCrossRefGoogle Scholar
  111. 111.
    Chimote G, Banerjee R (2010) In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis. J Biomed Mater Res B 94B(1):1–10CrossRefGoogle Scholar
  112. 112.
    Sung JC, Padilla DJ, Garcia-Contreras L, Verberkmoes JL, Durbin D, Peloquin CA, Elbert KJ, Hickey AJ, Edwards DA (2009) Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res 26(8):1847–1855PubMedCrossRefGoogle Scholar
  113. 113.
    Sethuraman VV, Hickey AJ (2002) Powder properties and their influence on dry powder inhaler delivery of an antitubercular drug. AAPS PharmSciTech 3(4):E28PubMedCrossRefGoogle Scholar
  114. 114.
    Changsan N, Nilkaeo A, Pungrassami P, Srichana T (2009) Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Mycobacterium bovis in alveolar macrophages. J Drug Target 17(10):751–762PubMedCrossRefGoogle Scholar
  115. 115.
    American Cancer Society (2010) Cancer facts and figures 2010. Accessed 30 Nov 2010

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lauren Willis
    • 1
  • Don HayesJr.
    • 2
  • Heidi M. Mansour
    • 1
    • 3
    Email author
  1. 1.Department of Pharmaceutical Sciences-Drug Development Division, College of PharmacyUniversity of KentuckyLexingtonUSA
  2. 2.Departments of Pediatrics and Internal Medicine, The Ohio State University College of Medicine, and Lung and Heart-Lung Transplant ProgramsNationwide Children’s HospitalColumbusUSA
  3. 3.Center of Membrane SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations