, Volume 187, Issue 3, pp 187–194 | Cite as

TGF-β1 Induces Human Bronchial Epithelial Cell-to-Mesenchymal Transition in Vitro

  • Min ZhangEmail author
  • Zhi Zhang
  • Hai-Yan Pan
  • De-Xi Wang
  • Zhe-Tong Deng
  • Xiao-Ling Ye


The subepithelial fibrosis component of airway remodeling in asthma is mediated through induction of transforming growth factor-β1 (TGF-β1) expression with consequent activation of myofibroblasts to produce extracellular matrix proteins. The number of myofibroblasts is increased in the asthmatic airway and is significantly correlated with the thickness of lamina reticularis. However, much is still unknown regarding the origin of bronchial myofibroblasts. Emerging evidence suggests that myofibroblasts can derive from epithelial cells by an epithelial-to-mesenchymal transition (EMT). In this study we investigated whether TGF-β1 could induce bronchial epithelial EMT in the human bronchial epithelial cell. Cultured human bronchial epithelial cells, 16HBE-14o, were stimulated with 10 ng/ml TGF-β1. Morphologic changes were observed and stress fiber by actin reorganization was detected by indirect immunostaining. The expression of α-SMA (α-smooth muscle actin) and the epithelial cell marker E-cadherin were detected in those 16HBE-14o cells after TGF-β1 stimulation for 72 h, using immunostaining and RT-PCR. The contents of collagen I were determined by radioimmunoassay, and the levels of endogenous TGF-β1 were measured with ELISA. Human bronchial epithelial cells stimulated with TGF-β1 were converted from a “cobblestone” epithelial structure into an elongated fibroblast-like shape. Incubation of human bronchial epithelial cells with TGF-β1 induced de novo expression of α-SMA, increased formation of stress fiber by F-actin reorganization, and loss of epithelial marker E-cadherin. Moreover, a significant increase in the levels of collagen I and endogenous TGF-β1 released from bronchial epithelial cells stimulated with TGF-β1 were observed. These results suggested that human bronchial epithelial cells, under stimulation of TGF-β1, underwent transdifferentiation into myofibroblasts.


Bronchial epithelial cell Transforming growth factor-β1 Epithelial-to-mesenchymal transition 



This work was supported by Guangzhou Medical and Health Science Research Foundation (No. 2007-ZDi-06, No. 2007-YB-040) and Guangdong Medical Science Research Foundation (No. A2008537).


  1. 1.
    Vignola AM, Mirabella F, Costanzo G, Di Giorgi R, Gjomarkaj M, Bellia V, Bonsignore G (2003) Airway remodeling in asthma. Chest 123:417S–422S. doi: 10.1378/chest.123.3_suppl.417S-a PubMedCrossRefGoogle Scholar
  2. 2.
    Howell JE, McAnulty RJ (2006) TGF-beta: its role in asthma and therapeutic potential. Curr Drug Targets 7:547–565. doi: 10.2174/138945006776818692 PubMedCrossRefGoogle Scholar
  3. 3.
    Yamauchi K (2006) Airway remodeling in asthma and its influence on clinical pathophysiology. Tohoku J Exp Med 209:75–87. doi: 10.1620/tjem.209.75 PubMedCrossRefGoogle Scholar
  4. 4.
    Postma DS, Timens W (2006) Remodeling in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 3:434–439. doi: 10.1513/pats.200601-006AW PubMedCrossRefGoogle Scholar
  5. 5.
    Beckett PA, Howarth PH (2003) Pharmacotherapy and airway remodelling in asthma? Thorax 58:163–174. doi: 10.1136/thorax.58.2.163 PubMedCrossRefGoogle Scholar
  6. 6.
    Roche WR, Beasley R, Williams JH, Holgate ST (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1:520–524. doi: 10.1016/S0140-6736(89)90067-6 PubMedCrossRefGoogle Scholar
  7. 7.
    Hoshino M, Nakamura Y, Sim JJ (1998) Expression of growth factors and remodelling of the airway wall in bronchial asthma. Thorax 53:21–27PubMedCrossRefGoogle Scholar
  8. 8.
    Brewster CE, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR (1990) Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 3:507–511PubMedGoogle Scholar
  9. 9.
    Hoshino M, Takahashi M, Takai Y, Sim J (1999) Inhaled corticosteroids decrease subepithelial collagen deposition by modulation of the balance between matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 expression in asthma. J Allergy Clin Immunol 104:356–363. doi: 10.1016/S0091-6749(99)70379-9 PubMedCrossRefGoogle Scholar
  10. 10.
    Vignola AM, Chanez P, Chiappara G, Merendino A, Pace E, Rizzo A, la Rocca AM, Bellia V, Bonsignore G, Bousquet J (1997) Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis. Am J Respir Crit Care Med 156:591–599PubMedGoogle Scholar
  11. 11.
    Nakamura T, Sakata R, Ueno T, Sata M, Ueno H (2000) Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology 32:247–255. doi: 10.1053/jhep.2000.9109 PubMedCrossRefGoogle Scholar
  12. 12.
    Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Böttinger EP, Klotman PE, Thorgeirsson SS (1996) Transgenic mice with increased plasma levels of TGF-beta 1 develop progressive renal disease. Lab Invest 74:991–1003PubMedGoogle Scholar
  13. 13.
    Giri SN, Hyde DM, Hollinger MA (1993) Effect of antibody to transforming growth factor beta on bleomycin induced accumulation of lung collagen in mice. Thorax 48:959–966. doi: 10.1136/thx.48.10.959 PubMedCrossRefGoogle Scholar
  14. 14.
    Redington AE, Madden J, Frew AJ, Djukanovic R, Roche WR, Holgate ST, Howarth PH (1997) Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 156:642–647PubMedGoogle Scholar
  15. 15.
    Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160:1001–1008PubMedGoogle Scholar
  16. 16.
    Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210. doi: 10.1002/path.2277 PubMedCrossRefGoogle Scholar
  17. 17.
    Nicolás FJ, Lehmann K, Warne PH, Hill CS, Downward J (2003) Epithelial to mesenchymal transition in Madin-Darby canine kidney cells is accompanied by down-regulation of Smad3 expression, leading to resistance to transforming growth factor-beta-induced growth arrest. J Biol Chem 278:3251–3256. doi: 10.1074/jbc.M209019200 PubMedCrossRefGoogle Scholar
  18. 18.
    Masszi A, Di Ciano C, Sirokmány G, Arthur WT, Rotstein OD, Wang J, McCulloch CA, Rosivall L, Mucsi I, Kapus A (2003) Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol 284:F911–F924PubMedGoogle Scholar
  19. 19.
    Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350PubMedGoogle Scholar
  20. 20.
    Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z (2005) TGF-betal induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6:56. doi: 10.1186/1465-9921-6-56 PubMedCrossRefGoogle Scholar
  21. 21.
    Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z (2005) Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-betal: potential role in idiopathic pulmonary fibrosis. Am J Pathol 166:1321–1332PubMedGoogle Scholar
  22. 22.
    Yao HW, Xie QM, Chen JQ, Deng YM, Tang HF (2004) TGF-betal induces alveolar epithelial to mesenchymal transition in vitro. Life Sci 76:29–37. doi: 10.1016/j.lfs.2004.06.019 PubMedCrossRefGoogle Scholar
  23. 23.
    Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 103:13180–13185. doi: 10.1073/pnas.0605669103 PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang Z, Li XJ, Liu Y, Zhang X, Li YY, Xu WS (2007) Recombinant human decorin inhibits cell proliferation and downregulates TGF-beta1 production in hypertrophic scar fibroblasts. Burns 33:634–641. doi: 10.1016/j.burns.2006.08.018 PubMedCrossRefGoogle Scholar
  25. 25.
    Makinde T, Murphy RF, Agrawal DK (2007) The regulatory role of TGF-beta in airway remodeling in asthma. Immunol Cell Biol 85:348–356. doi: 10.1038/sj.icb.7100044 PubMedCrossRefGoogle Scholar
  26. 26.
    Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA (2003) Global expression profiling of fibroblast responses to transforming growth factor-betal reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. Am J Pathol 162:533–546PubMedGoogle Scholar
  27. 27.
    Kuhn C, McDonald JA (1991) The roles of the myofibroblast in idiopathic pulmonary fibrosis. Ultrastructural and immunohistochemical features of sites of active extracellular matrix synthesis. Am J Pathol 138:1257–1265PubMedGoogle Scholar
  28. 28.
    Oda D, Gown AM, Vande Berg JS, Stern R (1988) The fibroblast-like nature of myofibroblasts. Exp Mol Pathol 49:316–329. doi: 10.1016/0014-4800(88)90004-4 PubMedCrossRefGoogle Scholar
  29. 29.
    Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S (2003) Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171:380–389PubMedGoogle Scholar
  30. 30.
    Yang J, Liu Y (2001) Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 159:1465–1475PubMedGoogle Scholar
  31. 31.
    Willis BC, duBois RM, Borok Z (2006) Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc 3:377–382. doi: 10.1513/pats.200601-004TK PubMedCrossRefGoogle Scholar
  32. 32.
    Ogawa E, Elliott WM, Hughes F, Eichholtz TJ, Hogg JC, Hayashi S (2004) Latent adenoviral infection induces production of growth factors relevant to airway remodeling in COPD. Am J Physiol Lung Cell Mol Physiol 286:L189–L197. doi: 10.1152/ajplung.00315.2002 PubMedCrossRefGoogle Scholar
  33. 33.
    Tanaka H, Masuda T, Tokuoka S, Komai M, Nagao K, Takahashi Y, Nagai H (2001) The effect of allergen-induced airway inflammation on airway remodeling in a murine model of allergic asthma. Inflamm Res 50:616–624. doi: 10.1007/PL00000243 PubMedCrossRefGoogle Scholar
  34. 34.
    Böttinger EP, Bitzer M (2002) TGF-beta signaling in renal disease. J Am Soc Nephrol 13:2600–2610. doi: 10.1097/01.ASN.0000033611.79556.AE PubMedCrossRefGoogle Scholar
  35. 35.
    Boukhalfa G, Desmoulière A, Rondeau E, Gabbiani G, Sraer JD (1996) Relationship between alpha-smooth muscle actin expression and fibrotic changes in human kidney. Exp Nephrol 4:241–347PubMedGoogle Scholar
  36. 36.
    Nightingale J, Patel S, Suzuki N, Buxton R, Takagi KI, Suzuki J, Sumi Y, Imaizumi A, Mason RM, Zhang Z (2004) Oncostatin M, a cytokine released by activated mononuclear cells, induces epithelial cell-myofibroblast transdifferentiation via Jak/Stat pathway activation. J Am Soc Nephrol 15:21–32. doi: 10.1097/01.ASN.0000102479.92582.43 PubMedCrossRefGoogle Scholar
  37. 37.
    Ewing CM, Ru N, Morton RA, Robinson JC, Wheelock MJ, Johnson KR, Barrett JC, Isaacs WB (1995) Chromosome 5 suppresses tumorigenicity of PC3 prostate cancer cells: correction with re-expression of alpha-catenin and restoration of E-cadherin function. Cancer Res 55:4813–4817PubMedGoogle Scholar
  38. 38.
    Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83. doi: 10.1038/35000025 PubMedCrossRefGoogle Scholar
  39. 39.
    Kim K, Lu Z, Hay ED (2002) Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26:463–476. doi: 10.1006/cbir.2002.0901 PubMedCrossRefGoogle Scholar
  40. 40.
    Kenyon NJ, Ward RW, McGrew G, Last JA (2003) TGF-beta1 causes airway fibrosis and increased collagen I and III mRNA in mice. Thorax 58:772–777. doi: 10.1136/thorax.58.9.772 PubMedCrossRefGoogle Scholar
  41. 41.
    Agrotis A, Condron M, Bobik A (2000) Alternative splicing within the TGF-beta type I receptor gene (ALK-5) generates two major functional isoforms in vascular smooth muscle cells. FEBS Lett 467:128–132. doi: 10.1016/S0014-5793(00)01132-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Min Zhang
    • 1
    Email author
  • Zhi Zhang
    • 2
  • Hai-Yan Pan
    • 1
  • De-Xi Wang
    • 1
  • Zhe-Tong Deng
    • 1
  • Xiao-Ling Ye
    • 1
  1. 1.Department of Respiratory and Intensive Care Medicine (ICU), Guangzhou Red Cross HospitalJinan UniversityGuangzhouChina
  2. 2.Department of Burn and Plastic Surgery, Guangzhou Red Cross HospitalJinan UniversityGuangzhouChina

Personalised recommendations