, Volume 187, Issue 2, pp 110–115 | Cite as

Association Between p53 codon 72 Genetic Polymorphism and Tobacco Use and Lung Cancer Risk

  • Dante D. Cáceres
  • Luis A. Quiñones
  • Jane C. Schroeder
  • Leonel D. Gil
  • Carlos E. Irarrázabal


Lung cancer (LCa) is the leading cause of death by cancer in men. Genetic and environmental factors play a synergistic role in its etiology. We explore in 111 lung cancer cases and 133 unrelated noncancer controls the gene-environment interaction (G × E) between p53cd72 polymorphism variants and smoking and the effect on LCa risk in two kinds of case-control designs. We assessed the interaction odds ratio (IOR) using an adjusted unconditional logistic model. We found a significant and positive interaction association between Pro* allele carriers and smoking habits in both case-control and case-only designs: IOR = 3.90 (95% confidence interval [CI] = 1.10–13.81) and 3.05 (95% CI = 1.63–5.72), respectively. These exploratory results suggest a synergistic effect of the smoking habit and the susceptibility of the Pro allele on lung cancer risk compared with each risk factor alone.


Lung cancer Case control Case only Gene-environment interaction Genetic polymorphisms Risk effect modification Synergistic effect 



The National Fund of Scientific Development and Technology (FONDECYT) (Grant No. 2990019) supported this work. Dr. Dante Cáceres thanks Dr. Nevin Schrimshaw and the Ellison Medical Foundation-International Nutrition Foundation.


  1. 1.
    Parkin DM, Whelan SL, Ferlay J, Raymond L, Young J (1997) Cancer Incidence in five continents, vol VII, No 143. Lyon, France: IARC Scientific PublicationsGoogle Scholar
  2. 2.
    Boffeta P, Trichopoulos D (2002) Prostate cancer. In: Adami HO, Hunter D, Trichopoulos D (eds) Textbook of cancer epidemiology. Oxford University Press, New York, pp 400–428Google Scholar
  3. 3.
    Alberg AJ, Samet JM (2003) Epidemiology of lung cancer. Chest 123(1 Suppl):21S–49SGoogle Scholar
  4. 4.
    Shields PG (2002) Molecular epidemiology of smoking and lung cancer. Oncogene 21(45):6870–6876Google Scholar
  5. 5.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53Google Scholar
  6. 6.
    Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331Google Scholar
  7. 7.
    Weinberg RA (1991) Tumor suppressor genes. Science 254(5035):1138–1146PubMedCrossRefGoogle Scholar
  8. 8.
    Bennett WP, Hussain SP, Vahakangas KH, Khan MA, Shields PG, Harris CC (1999) Molecular epidemiology of human cancer risk: gene-environment interactions and p53 mutation spectrum in human lung cancer. J Pathol 187(1):8–18PubMedCrossRefGoogle Scholar
  9. 9.
    Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G (1999) Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19(2):1092–1100Google Scholar
  10. 10.
    Wang YC, Chen CY, Chen SK, Chang YY, Lin P (1999) p53 codon 72 polymorphism in Taiwanese lung cancer patients: association with lung cancer susceptibility and prognosis. Clin Cancer Res 5(1):129–134PubMedGoogle Scholar
  11. 11.
    Jin X, Wu X, Roth JA, Amos CI, King TM, Branch C, Honn SE, Spitz MR (1995) Higher lung cancer risk for younger African-Americans with the Pro/Pro p53 genotype. Carcinogenesis 16(9):2205–2208PubMedCrossRefGoogle Scholar
  12. 12.
    To-Figueras J, Gene M, Gomez-Catalan J, Galan C, Firvida J, Fuentes M, Rodamilans M, Huguet E, Estape J, Corbella J (1996) Glutathione-S-transferase M1 and codon 72 p53 polymorphisms in a northwestern Mediterranean population and their relation to lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev 5(5):337–342PubMedGoogle Scholar
  13. 13.
    Tagawa M, Murata M, Kimura H (1998) Prognostic value of mutations and a germ line polymorphism of the p53 gene in non-small-cell lung carcinoma: association with clinicopathological features. Cancer Lett 128(1):93–99PubMedCrossRefGoogle Scholar
  14. 14.
    Birgander R, Sjalander A, Rannug A, Alexandrie AK, Sundberg MI, Seidegard J, Tornling G, Beckman G, Beckman L (1995) P53 polymorphisms and haplotypes in lung cancer. Carcinogenesis 16(9):2233–2236PubMedCrossRefGoogle Scholar
  15. 15.
    Weston A, Ling-Cawley HM, Caporaso NE, Bowman ED, Hoover RN, Trump BF, Harris CC (1994) Determination of the allelic frequencies of an L-myc and a p53 polymorphism in human lung cancer. Carcinogenesis 15(4):583–587PubMedCrossRefGoogle Scholar
  16. 16.
    Kawajiri K, Nakachi K, Imai K, Watanabe J, Hayashi S (1993) Germ line polymorphisms of p53 and CYP1A1 genes involved in human lung cancer. Carcinogenesis 14(6):1085–1089PubMedCrossRefGoogle Scholar
  17. 17.
    Biros E, Kalina I, Biros I, Kohut A, Bogyiova E, Salagovic J, Stubna J (2001) Polymorphism of the p53 gene within the codon 72 in lung cancer patients. Neoplasma 48(5):407–411PubMedGoogle Scholar
  18. 18.
    Xiao H, Singh SV (2007) p53 regulates cellular responses to environmental carcinogen benzo[a]pyrene–7,8-diol-9,10-epoxide in human lung cancer cells. Cell Cycle 6(14):1753–1761PubMedGoogle Scholar
  19. 19.
    Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21(48):7435–7451PubMedCrossRefGoogle Scholar
  20. 20.
    Pfeifer GP, Hainaut P (2003) On the origin of G → T transversions in lung cancer. Mutat Res 526(1–2):39–43PubMedGoogle Scholar
  21. 21.
    Shen YM, Troxel AB, Vedantam S, Penning TM, Field J. Comparison of p53 mutations induced by PAH o-quinones with those caused by anti-benzo[a]pyrene diol epoxide in vitro: role of reactive oxygen and biological selection. Chem Res Toxicol 19(11):1441–1450Google Scholar
  22. 22.
    Irarrazabal CE, Rojas C, Aracena R, Marquez C, Gil L (2003) Chilean pilot study on the risk of lung cancer associated with codon 72 polymorphism in the gene of protein p53. Toxicol Lett 144(1):69–76PubMedCrossRefGoogle Scholar
  23. 23.
    de la Calle-Martin O, Romero M, Fabregat V, Ercilla G, Vives J, Yague J (1990) MspI polymorphism of the human p53 gene. Nucleic Acids Res 18(16):4963Google Scholar
  24. 24.
    Korf B (2000) Human genetics: a problem based approach, 2nd edn. Blackwell Science, Cambridge, MAGoogle Scholar
  25. 25.
    Quiñones L, Lucas D, Godoy J, Cáceres D, Berthou F, Varela N, Lee K, Acevedo C, Martínez L, Aguilera AM, Gil L (2001) CYP1A1, CYP2E1 and GSTM1 genetic polymorphisms The effect of single and combined genotypes on lung cancer susceptibility in Chilean people. Cancer Lett 174(1):35–44PubMedCrossRefGoogle Scholar
  26. 26.
    Botto LD, Khoury MJ (2001) Commentary: facing the challenge of gene-environment interaction: the two-by-four table and beyond. Am J Epidemiol 153(10):1016–1020PubMedCrossRefGoogle Scholar
  27. 27.
    Khoury MJ, Flanders WD (1996) Nontraditional epidemiologic approaches in the analysis of gene-environment interaction: case–control studies with no controls. Am J Epidemiol 144(3):207–213PubMedGoogle Scholar
  28. 28.
    Hosmer DW, Lemeshow S (1992) Confidence interval estimation of interaction. Epidemiology 3(5):452–456PubMedCrossRefGoogle Scholar
  29. 29.
    Poole C (2001) Low P-values or narrow confidence intervals: which are more durable? Epidemiology 12(3):291–294PubMedCrossRefGoogle Scholar
  30. 30.
    STATA (2000) Intercooled STATA for Windows. 7th edn. STATA Corporation, College Station, TXGoogle Scholar
  31. 31.
    Miller DP, Liu G, De Vivo I, Lynch TJ, Wain JC, Su L, Christiani DC (2002) Combinations of the variant genotypes of GSTP1, GSTM1, and p53 are associated with an increased lung cancer risk. Cancer Res 62(10):2819–2823PubMedGoogle Scholar
  32. 32.
    Fan R, Wu MT, Miller D, Wain JC, Kelsey KT, Wiencke JK, Christiani DC (2000) The p53 codon 72 polymorphism and lung cancer risk. Cancer Epidemiol Biomarkers Prev 9(10):1037–1042PubMedGoogle Scholar
  33. 33.
    Weston A, Perrin LS, Forrester K, Hoover RN, Trump BF, Harris CC, Caporaso NE (1992) Allelic frequency of a p53 polymorphism in human lung cancer. Cancer Epidemiol Biomarkers Prev 1(6):481–483PubMedGoogle Scholar
  34. 34.
    Liu G, Miller DP, Zhou W, Thurston SW, Fan R, Xu LL, Lynch TJ, Wain JC, Su L, Christiani DC (2001) Differential association of the codon 72 p53 and GSTM1 polymorphisms on histological subtype of non-small cell lung carcinoma. Cancer Res 61(24):8718–8722PubMedGoogle Scholar
  35. 35.
    Szymanowska A, Jassem E, Dziadziuszko R, Borg A, Limon J, Kobierska-Gulida G, Rzyman W, Jassem J (2006) Increased risk of non-small cell lung cancer and frequency of somatic TP53 gene mutations in Pro72 carriers of TP53 Arg72Pro polymorphism. Lung Cancer 52(1):9–14Google Scholar
  36. 36.
    Hu Y, McDermott MP, Ahrendt SA (2005) The p53 codon 72 proline allele is associated with p53 gene mutations in non-small cell lung cancer. Clin Cancer Res 11(7):2502–2509Google Scholar
  37. 37.
    Popanda O, Edler L, Waas P, Schattenberg T, Butkiewicz D, Muley T, Dienemann H, Risch A, Bartsch H, Schmezer P (2007) Elevated risk of squamous-cell carcinoma of the lung in heavy smokers carrying the variant alleles of the TP53 Arg72Pro and p21 Ser31Arg polymorphisms. Lung Cancer 55(1):25–34Google Scholar
  38. 38.
    Zhang X, Miao X, Guo Y, Tan W, Zhou Y, Sun T, Wang Y, Lin D (2006) Genetic polymorphisms in cell cycle regulatory genes MDM2 and TP53 are associated with susceptibility to lung cancer. Hum Mutat 27(1):110–117Google Scholar
  39. 39.
    Matakidou A, Eisen T, Houlston RS (2003) TP53 polymorphisms and lung cancer risk: a systematic review and meta-analysis. Mutagenesis 18(4):377–385PubMedCrossRefGoogle Scholar
  40. 40.
    Schabath MB, Wu X, Wei Q, Li G, Gu J, Spitz MR (2006) Combined effects of the p53 and p73 polymorphisms on lung cancer risk. Cancer Epidemiol Biomarkers Prev 15(1):158–161Google Scholar
  41. 41.
    Hong Y, Miao X, Zhang X, Ding F, Luo A, Guo Y, Tan W, Liu Z, Lin D (2005) The role of P53 and MDM2 polymorphisms in the risk of esophageal squamous cell carcinoma. Cancer Res 65(20):9582–9587Google Scholar
  42. 42.
    Kuroda Y, Tsukino H, Nakao H, Imai H, Katoh T (2003) p53 Codon 72 polymorphism and urothelial cancer risk. Cancer Lett 189(1):77–83Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dante D. Cáceres
    • 1
  • Luis A. Quiñones
    • 2
  • Jane C. Schroeder
    • 3
  • Leonel D. Gil
    • 4
  • Carlos E. Irarrázabal
    • 5
  1. 1.Epidemiology Division, School of Public Health, Faculty of MedicineUniversity of ChileSantiagoChile
  2. 2.Molecular and Clinical Pharmacology Program, IFT, Institute of Biomedical Sciences, Faculty of MedicineUniversity of ChileSantiagoChile
  3. 3.Department of Epidemiology, Gillings School of Public HealthNorth Carolina University at Chapel HillChapel HillUSA
  4. 4.Laboratory of Environmental Toxicology, ICBM, Faculty of MedicineUniversity of ChileSantiagoChile
  5. 5.Department of Molecular and Integrative Physiology, Faculty of MedicineLos Andes UniversitySantiagoChile

Personalised recommendations