, Volume 187, Issue 1, pp 17–22

The Impact of CPAP on Cardiovascular Biomarkers in Minimally Symptomatic Patients with Obstructive Sleep Apnea: A Pilot Feasibility Randomized Crossover Trial

  • Vikram R. Comondore
  • Rupi Cheema
  • Joel Fox
  • Arsalan Butt
  • G. B. John Mancini
  • John A. Fleetham
  • C. Frank Ryan
  • Sammy Chan
  • Najib T. Ayas


Background Previous, largely uncontrolled studies demonstrated the substantial effects of continuous positive airway pressure ventilation (CPAP) on a variety of physiologic and biochemical markers known to be risk factors for cardiovascular disease in patients with obstructive sleep apnea (OSA). In this pilot crossover study, we assessed (1) the feasibility of using CPAP in a group of minimally symptomatic patients with OSA, assessed through patient compliance and (2) CPAP therapy’s effect on biomarkers in these patients. Methods We studied patients with minimal daytime sleepiness who were referred to the University of British Columbia’s Hospital Sleep Clinic with suspected OSA and an apnea-hypopnea index (AHI) > 15 events/h. Patients were randomized to either CPAP or no therapy for 4 weeks followed by a washout of 4 weeks, and then a crossover to the other intervention. Fasting morning blood and urine, 24-h blood pressure (BP) measurements, and endothelial function (peak flow-mediated dilation to nitroglycerin-mediated dilation ratio) were assessed before and after each study intervention. Results Nine adult male and four female patients were studied. Mean (SD) age was 55 (7) years, mean AHI = 27.9/h, mean Epworth Sleepiness Score = 6.8 (11/13 had a score < 10), and mean BMI = 31.1 kg/m2. Mean compliance with CPAP therapy was 5.53 h/night. Compared to no therapy, potential improvements were observed with CPAP for urinary microalbumin, norepinephrine, and epinephrine to creatinine ratios (decreased by 3.51 mg/mmol, 1.70 nmol/mmol, and 0.95 nmol/mmol, respectively); 24-h BP (systolic decreased by 3.60 mmHg, diastolic by 0.70 mmHg); homeostasis model for insulin resistance score (decreased by 1.11); and endothelial function (increased by 7.4%). However, none of the above differences was significant (p > 0.10). Conclusion In this pilot study there were potential improvements in a variety of cardiovascular biomarkers with CPAP. CPAP compliance was reasonably good even though patients were not particularly sleepy. Accordingly, larger randomized controlled trials in this area appear feasible and warranted.


Obstructive sleep apnea Hypopnea Continuous positive pressure ventilation Cardiovascular risk Endothelial function Blood pressure Dyslipidemia Diabetes 


  1. 1.
    Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 32:1230–1235. doi:10.1056/NEJM199304293281704 CrossRefGoogle Scholar
  2. 2.
    Ip M, Chung KF, Chan KN, Lam SP, Lee K (1999) Previously unrecognized obstructive sleep apnea in Chinese subjects with essential hypertension. Lung 177(6):391–400. doi:10.1007/PL00007656 PubMedCrossRefGoogle Scholar
  3. 3.
    AlGhanim N, Comondore V, Ayas NT (2008) The economic impact of obstructive sleep apnea. Lung 186:7–12. doi:10.1007/s00408-007-9055-5 PubMedCrossRefGoogle Scholar
  4. 4.
    Marin JM, Carrizo SJ, Vincente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:1046–1053PubMedGoogle Scholar
  5. 5.
    Szollosi I, Krum H, Kaye D, Naughton MT (2007) Sleep apnea in heart failure increases heart rate variability and sympathetic dominance. Sleep 30(1):1509–1514PubMedGoogle Scholar
  6. 6.
    Shamsuzzaman AS, Winnicki M, Lanfranchi P, Wolk R, Kara T, Accurso V, Somers VK (2002) Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105(21):2462–2464. doi:10.1161/01.CIR.0000018948.95175.03 PubMedCrossRefGoogle Scholar
  7. 7.
    Kato M, Roberts-Thomson P, Phillips BG, Haynes WG, Winnicki M, Accurso V, Somers VK (2000) Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation 102(21):2607–2610PubMedGoogle Scholar
  8. 8.
    Zamarron C, Ricoy J, Riveiro A, Gude F (2008) Plasminogen activator inhibitor 1 in obstructive sleep apnea patients with and without hypertension. Lung 186(3):151–156PubMedCrossRefGoogle Scholar
  9. 9.
    Budhiraja R, Parthasarathy S, Quan SF (2007) Endothelial dysfunction in obstructive sleep apnea. J Clin Sleep Med 3(4):409–415PubMedGoogle Scholar
  10. 10.
    Fleetham J, Ayas N, Bradley D, Ferguson K, Fitzpatrick M, George C, Hanly P, Hill F, Kimoff J, Kryger M, Morrison D, Series F, Tsai W, CTS Sleep Disordered Breathing Committee (2006) Canadian thoracic society guidelines: diagnosis and treatment of sleep disordered breathing in adults. Can Respir J 13(7):387–392PubMedGoogle Scholar
  11. 11.
    Patel SR, White DP, Malhotra A, Stanchina ML, Ayas NT (2003) Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea: results of a meta-analysis. Arch Intern Med 163:565–571. doi:10.1001/archinte.163.5.565 PubMedCrossRefGoogle Scholar
  12. 12.
    Mulgrew AT, Fox N, Ayas NT, Ryan CF (2007) Diagnosis and initial management of OSA without polysomnography: a randomized validation study. Ann Intern Med 146:157–166PubMedGoogle Scholar
  13. 13.
    Chan SY, Mancini GB, Kuramoto L, Schulzer M, Frohlich J, Ignaszewski A (2003) The prognostic importance of endothelial dysfunction and carotid atheroma burden in patients with coronary artery disease. J Am Coll Cardiol 42(6):1037–1043. doi:10.1016/S0735-1097(03)00927-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Rosner B (1995) Fundamentals of Biostatistics, 4th edn. Duxbury Press, Boston, MA, pp 564–565Google Scholar
  15. 15.
    Becker HF, Jerrentrup A, Ploch T, Grote L, Penzel T, Sullivan CE, Peter JH (2003) Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation 107(1):68–73. doi:10.1161/01.CIR.0000042706.47107.7A PubMedCrossRefGoogle Scholar
  16. 16.
    Campos-Rodriguez F, Grilo-Reina A, Perez-Ronchel J, Merino-Sanchez M, Gonzalez-Benitez MA, Beltran-Robles M, Almeida-Gonzalez C (2006) Effect of continuous positive airway pressure on ambulatory BP in patients with sleep apnea and hypertension: a placebo-controlled trial. Chest 129(6):1457–1467. doi:10.1378/chest.129.6.1459 CrossRefGoogle Scholar
  17. 17.
    Alajmi M, Mulgrew AT, Fox J, Davidson W, Schulzer M, Mak E, Ryan CF, Fleetham J, Choi P, Ayas NT (2007) Impact of CPAP therapy on blood pressure in patients with OSAH. A meta-analysis of RCT. Lung 185:67–72. doi:10.1007/s00408-006-0117-x Google Scholar
  18. 18.
    Haentjens P, Van Meerhaeghe A, Moscariello A, De Weerdt S, Poppe K, Dupont A, Velkeniers B (2007) The impact of CPAP on blood pressure in patients with obstructive sleep apnea syndrome. Arch Intern Med 167:757–764. doi:10.1001/archinte.167.8.757 PubMedCrossRefGoogle Scholar
  19. 19.
    Ridker PM (2003) High-sensitivity C-reactive protein and cardiovascular risk: rationale for screening and primary prevention. Am J Cardiol 92(4B):17K–22K. doi:10.1016/S0002-9149(03)00774-4 PubMedCrossRefGoogle Scholar
  20. 20.
    Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, Hirano T, Adachi M (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107(8):1129–1134. doi:10.1161/01.CIR.0000052627.99976.18 PubMedCrossRefGoogle Scholar
  21. 21.
    Barcelo A, Barbe F, Llompart E, Mayoralas LR, Ladaria A, Bosch M, Agustí AG (2004) Effects of obesity on C-reactive protein level and metabolic disturbances in male patients with obstructive sleep apnea. Am J Med 117(2):118–121. doi:10.1016/j.amjmed.2004.01.025 PubMedCrossRefGoogle Scholar
  22. 22.
    Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, Marino RL, Rodriguez A, Hubbard WC, O’Donnell CP, Polotsky VY (2005) Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 97:698. doi:10.1161/01.RES.0000183879.60089.a9 PubMedCrossRefGoogle Scholar
  23. 23.
    Robinson GV, Pepperell JC, Segal HC, Davies RJ, Stradling JR (2004) Circulating cardiovascular risk factors in obstructive sleep apnoea: data from randomised controlled trials. Thorax 59(9):777–782. doi:10.1136/thx.2003.018739 PubMedCrossRefGoogle Scholar
  24. 24.
    Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL (2002) Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med 165:677–682PubMedGoogle Scholar
  25. 25.
    Harsch IA, Schahin SP, Radespiel-Troger M, Weintz O, Jahreiss H, Fuchs FS, Wiest GH, Hahn EG, Lohmann T, Konturek PC, Ficker JH (2004) Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. Am J Respir Crit Care Med 169(2):156–162. doi:10.1164/rccm.200302-206OC PubMedCrossRefGoogle Scholar
  26. 26.
    West SD, Nicoll DJ et al (2007) The effect of CPAP on insulin resistance and HbA1C in men with OSA and type 2 diabetes. Thorax 62(11):969–974PubMedCrossRefGoogle Scholar
  27. 27.
    Steiropoulos P, Tsara V, Nena E, Fitili C, Kataropoulou M, Froudarakis M, Christaki P, Bouros D (2008) Effect of continuous positive airway pressure treatment on serum cardiovascular risk factors in patients with obstructive sleep apnea-hypopnea syndrome. Chest 132(3):843–851CrossRefGoogle Scholar
  28. 28.
    Robinson GV, Smith DM, Langford BA, Davies RJ, Stradling JR (2006) CPAP does not reduce blood pressure in non-sleepy hypertensive OSA patients. Eur Respira J 27:1229–1235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vikram R. Comondore
    • 1
  • Rupi Cheema
    • 2
  • Joel Fox
    • 1
    • 2
  • Arsalan Butt
    • 2
  • G. B. John Mancini
    • 1
  • John A. Fleetham
    • 1
    • 2
  • C. Frank Ryan
    • 1
    • 2
  • Sammy Chan
    • 1
  • Najib T. Ayas
    • 1
    • 2
    • 3
  1. 1.Department of MedicineUniversity of British ColumbiaVancouverCanada
  2. 2.Sleep Disorders Program and Respiratory DivisionUniversity of British ColumbiaVancouverCanada
  3. 3.Respiratory MedicineGordon and Leslie Diamond Health Care CentreVancouverCanada

Personalised recommendations