Archive for History of Exact Sciences

, Volume 72, Issue 3, pp 245–302 | Cite as

François Viète’s revolution in algebra

Article
  • 21 Downloads

Abstract

Françios Viète (1540–1603) was a geometer in search of better techniques for astronomical calculation. Through his theorem on angular sections he found a use for higher-dimensional geometric magnitudes which allowed him to create an algebra for geometry. We show that unlike traditional numerical algebra, the knowns and unknowns in Viète’s logistice speciosa are the relative sizes of non-arithmetized magnitudes in which the “calculations” must respect dimension. Along with this foundational shift Viète adopted a radically new notation based in Greek geometric equalities. His letters stand for values rather than types, and his given values are undetermined. Where previously algebra was founded in polynomials as aggregations, Viète became the first modern algebraist in working with polynomials built from operations, and the notations reflect these conceptions. Viète’s innovations are situated in the context of sixteenth-century practice, and we examine the interpretation of Jacob Klein, the only historian to have conducted a serious inquiry into the ontology of Viète’s “species”.

References

  1. Apollonius. 1537. Apollonii Pergei Philosophi, Mathematicique Excellentissimi Opera (trans: Memus, Joannes Baptista). Venetiis: Per Bernardinum Bindonum.Google Scholar
  2. Apollonius. 1566. Apollonii Pergaei Conicorum Libri Quattuor (trans: Commandino, Federico). Bononiæ: Ex officina Alexandri Benatii.Google Scholar
  3. Apollonius. 1891. Apollonii Pergaei quae Graece Exstant cum Commentariis Antiquis, Edidit et Latine Interpretatus est I.L. Heiberg. Stutgardiae: in aedibus B.G. Teubneri.Google Scholar
  4. Apollonius. 2000. Conics. Books I-III (trans: Taliaferro, R. Catesby). Santa Fe, NM: Green Lion Press.Google Scholar
  5. Borrel, Jean. 1559. Logistica. Lugduni: Apud Gulielmum Rovillium.Google Scholar
  6. Bos, Henk. 1996. Tradition and modernity in early modern mathematics: Viète, Descartes and Fermat. In L’Europe Mathématique: Histoires, Mythes, Identités = Mathematical Europe: History, Myth, Identity, ed. Catherine Goldstien, Jeremy Gray, and Jim Ritter, 183–204. Paris: Maison des sciences de l’homme.Google Scholar
  7. Bos, Henk. 2001. Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern Concept of Construction. New York: Springer.CrossRefMATHGoogle Scholar
  8. Cantor, Moritz. 1900. Vorlesungen über Geschichte der Mathematik, Zweiter Bend, von 1200–1668. Leipzig: B. G. Teubner.MATHGoogle Scholar
  9. Cantù, Paola. 2010. Aristotle’s prohibition rule on kind-crossing and the definition of mathematics as a science of quantities. Synthese 174: 225–235.MathSciNetCrossRefMATHGoogle Scholar
  10. Cardano, Girolamo. 1545. Artis Magnæ, sive De Regulis Algebraicis Lib. unus. Norimbergæ: per Ioh. Petreium excusum.Google Scholar
  11. Charbonneau, Louis. 2006. L’algèbre au cœur du programmme analytique. In François Viète: Un Mathématicien sous la Renaissance, ed. Evelyne Barbin and Anne Boyé, 53–73. Paris: Vuibert.Google Scholar
  12. Christianidis, Jean, and Jeffrey A. Oaks. 2013. Practicing algebra in late antiquity: The problem-solving of Diophantus of Alexandria. Historia Mathematica 40: 127–163.MathSciNetCrossRefMATHGoogle Scholar
  13. Copernicus, Nicolaus. 1543. De Revolutionibus Orbium Coelestium. Norimberæ: Apud Ioh. Petreium.MATHGoogle Scholar
  14. Crapulli, Giovanni. 1969. Mathesis Universalis: Genesi di un’Idea nel XVI Secolo. Roma: Edizioni dell’Ateneo.Google Scholar
  15. Dasypodius, Conrad. 1573. \({\varLambda }E \varXi \) IKON seu Dictionarium Mathematicum. Argentorati: Excudebat Nicolaus Vvyriot.Google Scholar
  16. Delambre, Jean-Baptiste-Joseph. 1819. Histoire de l’Astronomie du Moyen Age. Paris: \(\text{M}^{\text{ ME }}\) V\(^{\text{ E }}\) Courcier.Google Scholar
  17. Descartes, René. 1954. The Geometry of René Descartes, with a facsimile of the first edition (trans: Smith, David Eugene and Latham, Marcia L.). New York: Dover.Google Scholar
  18. di Stefano, Maria Elena. 1992. Alcune considerazioni sull’In Artem Analyticem Isagoge di François Viète’. In La Matematizzazione dell’Universo, ed. Lino Conti, 153–164. [Perugia]: Porziuncola.Google Scholar
  19. Diophantus. 1575. Diophanti Alexandrini Rerum Arithmeticarum Libri Sex (trans. and comm.: Xylander). Basileæ: Eusebium Episcopium & Nicolai Fr. hæredes.Google Scholar
  20. Euclid. 1543. Euclide Megarense Philosopho: Solo Introduttore delle Scientie Mathematice (trans: Tartaglia, Niccolò). Vinegia: Venturino Roffinelli.Google Scholar
  21. Euclid. 1550. Euclidis Megarensis, Philosophi & Mathematici Excellentissimi, Sex Libri Priores, de Geometricis Principiis, Græci & Latini [\(\ldots \)] together with Brevis Regularum Algebrae Descriptio, una cum Demonstrationibus Geometricis by Johann Scheubel. Basileae: Per Ioannem Hervagium.Google Scholar
  22. Euclid. 1551. Orontij Finæi Delphinatis [\(\ldots \)In sex priores libros Geometricorum elementorum Euclidis Megarensis [\(\ldots \)cum ipsius Euclidis textu Græco, & interpretatione Latina Bartholomei Zamberti Veneti. Lutetiae Parisiorum: Apud Reginaldum Calderium.Google Scholar
  23. Euclid. 1557. Euclidis Elementa Geometrica Demonstationum Libri Sex (trans: Peletier, Jacques). Lugduni: Apud Ioan. Tornæsium et Gul. Gazeium.Google Scholar
  24. Euclid. 1560. Les Six Premiers Livres des Elements d’Euclide (trans., comm.: Forcadel, Pierre). Paris: Chez Hierosme de Marnef, & Guillaume Cauellat.Google Scholar
  25. Euclid. 1562. Die sechs erste Bücher Euclidis, vom Anfang oder Grund der Geometrj (trans., comm.: Xylander (Wilhelm Holtzman)). Getruckht zu Basel.: Vollendet durch Jacob Kündig, zu Basel, in Joanns Oporini Kosten.Google Scholar
  26. Euclid. 1566. Euclidis Megarensis Mathematici Clarissimi Elementa Geometrica, Libris XV, ed. François de Foix Candale. Parisiis: Apud Ioannem Royerium.Google Scholar
  27. Euclid. 1572. Euclidis Elementorum Libri XV (trans: Commandino, Federico). Pisauri: Iacobus Chriegher German.Google Scholar
  28. Euclid. 1574. Euclidis Elementorum Libri XV (comm: Clavius, Christoph). Romae: Apud Vincentium Accoltum.Google Scholar
  29. Euclid. 1956. The Thirteen Books of Euclid’s Elements. 2nd ed, (trans: Heath, Sir Thomas). New York: Dover.Google Scholar
  30. al-Fārisī. 1994. Asās al-qawā‘id fī uṣūl al-Fawā’id, ed. by Muṣṭafā Mawāldī. Cairo: Ma‘had al-Makhṭūṭāt al-‘Arabīyah.Google Scholar
  31. Ferrier, Richard. 1980. Two Exegetical Treatises of François Viète Translated, Annotated, and Explained. Ph.D. dissertation, Indiana University.Google Scholar
  32. Fibonacci. 1857. Liber Abaci. In Scritti di Leonardo Pisano, Matematico del Secolo Decimoterzo ed. Baldassare Boncompagni. Rome: Tipografia delle Scienze Matematiche.Google Scholar
  33. Fibonacci. 2002. Fibonacci’s Liber Abaci: A translation into modern English of Leonardo Pisano’s Book of Calculation (trans: Sigler, L.E.). New York: Springer.Google Scholar
  34. Fraser, Craig G. 1997. The background to and early emergence of Euler’s analysis. In Analysis and Synthesis in Mathematics: History and Philosophy, ed. Michael Otte and Marco Panza, 47–78. Dordrecht: Kluwer.Google Scholar
  35. Freguglia, Paolo. 1989. Algebra e geometira in Viète. Bollettino di Storia delle Scienze Matematiche 9: 49–90.MathSciNetMATHGoogle Scholar
  36. Freguglia, Paolo. 2008a. Viète reader of Diophantus. An analysis of Zeteticorum Libri Quinque. Bollettino di Storia delle Scienze Matematiche 28: 51–95.MathSciNetMATHGoogle Scholar
  37. Freguglia, Paolo. 2008b. Les équations algébriques et la géométrie chez les algébristes du \(\text{ XVI }^{\text{ e }}\) siècle et chez Viète. In Liber Amicorum Jean Dhombres, ed. Patricia Radelet-de Grave, 148–161. Turnhout: Brepols.Google Scholar
  38. Garibaldi, Antonio C. 1992. Vecchia e nuova analisi di problema geometrici da Viete a Ghetaldi. In La Matematizzazione dell’Universo, ed. Lino Conti, 165–204. [Perugia]: Porziuncola.Google Scholar
  39. Ghetaldi, Marino. 1630. De Resolutione & Compositione Mathematica Libri Quinque. Opus Posthumum. Romæ: Typographia Reuerendae Camerae Apostolicae.Google Scholar
  40. Giusti, Enrico. 1990. Numeri, grandezze e Géométrie. In Descartes: Il Metodo e i Saggi: Atti del Convegno per il \(350^{\circ }\) Anniversario della pubblicazione del Discours de la Méthods e degni Essais, ed. Giulia Belgioioso, Guido Cimino, Pierre Costabel, and Giovanni Papuli, 419–439. Roma: Istituto della Enciclopedia Italiana Fondata da G. Treccani.Google Scholar
  41. Gosselin, Guillaume. 1577. De Arte Magna. Paris: Aegidium Beys.Google Scholar
  42. Gosselin, Guillaume. 2016. De Arte Magna Libri IV / Traité d’Algèbre (trans. & comm.: le Guillou-Kouteynikoff, Odile). Paris: Les Belles Lettres.Google Scholar
  43. Heeffer, Albrecht. 2008. The emergence of symbolic algebra as a shift in predominant models. Foundations of Science 13: 149–161.MathSciNetCrossRefMATHGoogle Scholar
  44. Heeffer, Albrecht. 2010. From the second unknown to the symbolic equation. In Philosophical Aspects of Symbolic Reasoning in Early Modern Mathematics, ed. Albrecht Heeffer and Maarten van Dyck, 57–101. London: College Publications.Google Scholar
  45. Hopkins, Burt C. 2011. The Origin of the Logic of Symbolic Mathematics: Edmund Husserl and Jacob Klein. Bloomington: Indiana University.MATHGoogle Scholar
  46. Jordanus de Nemore. 1981. De Numeris Datis, ed. & trans. by Barnabas Hughes. Berkeley: University of California.Google Scholar
  47. Klein, Jacob. 1936. Die griechische Logistik und die Entstehung der Algebra. II. Teil. Quellen un Studien zur Geschichte der Mathematik Astronomie und Physic 3.2: 122–235.MATHGoogle Scholar
  48. Klein, Jacob. 1968. Greek Mathematical Thought and the Origin of Algebra (trans: Brann, Eva). Cambridge: MIT; repr. 1992.Google Scholar
  49. Macbeth, Danielle. 2004. Viète, Descartes, and the emergence of modern mathematics. Graduate Faculty Philosophy Journal 25: 87–117.CrossRefGoogle Scholar
  50. Mahoney, Michael Sean. 1980. The beginnings of algebraic thought in the seventeenth century. In Descartes. Philosophy, Mathematics and Physics, ed. S. Gaukroger, 141–155. Brighton: The Harvester Press.Google Scholar
  51. Mahoney, Michael Sean. 1994. The Mathematical Career of Pierre de Fermat 1601–1665. 2nd ed. Princeton: Princeton University.Google Scholar
  52. Malet, Antoni. 2006. Renaissance notions of number and magnitude. Historia Mathematica 33: 63–81.MathSciNetCrossRefMATHGoogle Scholar
  53. Marie, Maximilien. 1884. Histoire des Sciences Mathématiques et physiques, Tome III. De Viète a Descartes. Paris: Gauthier-Villars.MATHGoogle Scholar
  54. Marre, Aristide (ed.). 1880. Le Triparty en la Science des Nombres par Maistre Nicolas Chuquet Parisien. Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche 13: 593–659; 693–814.Google Scholar
  55. Massa Esteve, M.R. 2012. The role of symbolic language in the transformation of mathematics. Philosophica 87: 153–193.Google Scholar
  56. Maurolico, Francesco. 1575. Arithmeticorum Libri Duo. Venetijs: Apud Franciscum Franciscium Senensem.Google Scholar
  57. Montucla, Jean-Étienne. 1758. Histoire des Mathematiques, Volume I. Paris: Ch. Ant. Jombert.Google Scholar
  58. Monzón, Pedro. 1559. Elementa Arithmeticæ ac Geometriæ, ad disciplinas omnes, Aristoteleam præsertim Dialecticam, ac Philosophiam apprimè necessaria, ex Euclide decerpta. Valentinae: Ex typographia Ioannis Mey.Google Scholar
  59. Mueller, Ian. 1981. Philosophy of Mathematics and Deductive Structure in Euclid’s Elements. Cambridge, MA: MIT Press.MATHGoogle Scholar
  60. Nunn, T.Percy. 1914. The Teaching of Algebra (Including Trigonometry). London: Longmans, Green and Co.MATHGoogle Scholar
  61. Oaks, Jeffrey A. 2009. Polynomials and equations in Arabic algebra. Archive for History of Exact Sciences 63: 169–203.MathSciNetCrossRefMATHGoogle Scholar
  62. Oaks, Jeffrey A. 2010. Polynomials and equations in medieval Italian algebra. Bollettino di Storia delle Scienze Matematiche 30: 23–60.MathSciNetMATHGoogle Scholar
  63. Oaks, Jeffrey A. 2011. Al-Khayyām’s scientific revision of algebra. Suhayl: Journal for the History of the Exact and Natural Sciences in Islamic Civilisation 10: 47–75.MathSciNetMATHGoogle Scholar
  64. Oaks, Jeffrey A. 2012. Algebraic symbolism in medieval Arabic algebra. Philosophica 87: 28–83.Google Scholar
  65. Oaks, Jeffrey A. 2017. Irrational ‘coefficients’ in Renaissance algebra. Science in Context 30: 141–172.MathSciNetCrossRefMATHGoogle Scholar
  66. Pacioli, Luca. 1494. Summa de Arithmetica, Geometria, Proportioni, & Proportionalita. Venetiis: Paganino de Paganini.Google Scholar
  67. Panza, Marco. 2005. Newton et les Origines de l’Analyse: 1664–1666. Paris: Albert Blanchard.MATHGoogle Scholar
  68. Panza, Marco. 2006. François Viète: Between analysis and cryptanalysis. Studies in History and Philosophy of Science 37: 269–289.MathSciNetCrossRefGoogle Scholar
  69. Panza, Marco. 2007. What is new and what is old in Viète’s Analysis Restituta and Algebra Nova, and where do they come from? Some reflections on the relations between algebra and analysis before Viète. Revue d’Histoire des Mathématiques 13: 85–153.MATHGoogle Scholar
  70. Pappus. 1588. Pappi Alexandrini Mathematicae Collectiones (trans: Commandino, Federico). Venetiis: Apud Franciscum de Franciscis Sensem.Google Scholar
  71. Pappus. 1986. Book 7 of the Collection, vol. 2, ed. with trans. and comm. by Alexander Jones. New York: Springer.Google Scholar
  72. Pappus. 2010. Pappus of Alexandria: Book 4 of the Collection, ed. with trans. and comm. by Heike Sefrin-Weis. London: Springer.Google Scholar
  73. Proclus. 1560. Procli Diadochi Lycii [\(\ldots \)In Primvm Euclidis Elementorum librum Commentariorum ad Universam Mathematicam Disciplinam Principium Eruditionis Tradentium libri IIII (trans: Barozzi, Francesco (Barocius)). Patavii: Excudebat Gratiosus Perchacinus.Google Scholar
  74. Ptolemy. 1515. Almagestum (trans: Gerard of Cremona). Venetijs: Petri Liechtenstein.Google Scholar
  75. Ptolemy. 1528. Almagestum seu Magnae Constructionis Mathematicae Opus Plane divinum (trans: George of Trebizond). [Veneta]: [Luceantonii Iu[n]ta officina aere proprio, ac typis excussa \(\ldots \)].Google Scholar
  76. Ptolemy. 1550. Ptolemaei Magnam Compositionem, Quam Almagestum Vocant, Libri Tredecim (trans: von Peurbach, Georg and Regiomontanus). Noribergæ: Apud Ioannem Montanum, & Ulricum Neuberum.Google Scholar
  77. Ptolemy. 1998. Ptolemy’s Almagest (trans. and annotated: Toomer, G.J.). Princeton: Princeton University.Google Scholar
  78. Ramus, Petrus. 1560. Algebra. Parisiis: Apud Andream Wechelum, sub Pegaso, in vico Bellovaco.Google Scholar
  79. Ramus, Petrus. 1569. Arithmeticae Libri Duo: Geometriae Septem et Viginti. Basileae: Per Eusebium Episcopium, & Nicolai fratris hæredes.Google Scholar
  80. Regiomontanus. 1584. Tabulæ Directionum Profectionumque. Witebergae: Imprimebantur in Officina Typographica Matthæi Welack.Google Scholar
  81. Reisch, Gregor. 1504. Margarita Philosophica. [Friburgi?]: [Joannia Schotti Argentinen].Google Scholar
  82. Ritter, Frédéric. 1895. François Viète Inventeur de l’Algèbre Moderne 1540–1603. Paris: Revue Occidentale.Google Scholar
  83. Schneider, Martina R. 2016. Contextualizing Unguru’s 1975 attack on the historiography of ancient Greek mathematics. In Historiography of Mathematics in the 19th and 20th Centuries, ed. Volker R. Remmert, Martina R. Schneider, and Henrik Kragh Sørensen, 245-67. Cham: Birkhäuser.Google Scholar
  84. Serfati, Michel. 2005. La Révolution Symbolique: La Constitution de l’Ecriture Symolique Mathématique. Paris: Pétra.MATHGoogle Scholar
  85. Serfati, Michel. 2010. Symbolic revolution, scientific revolution: mathematical and philosophical aspects. In Philosophical Aspects of Symbolic Reasoning in Early Modern Mathematics, ed. Albrecht Heeffer and Maarten van Dyck, 105–124. London: College Publications.Google Scholar
  86. Smith, D.E. 1953. History of Mathematics, vol. 2. New York: Dover.Google Scholar
  87. Stevin, Simon. 1585. L’Arithmetique. A Leyde: De l’imprimerie de Christophe Plantin.Google Scholar
  88. Stifel, Michael. 1544. Arithmetica Integra. Norimbergæ: Iohan. Petreium.Google Scholar
  89. Swerdlow, Noel. 1975. The planetary theory of François Viète 1. The fundamental planetary models. Journal for the History of Astronomy 6: 185–208.MathSciNetCrossRefGoogle Scholar
  90. Tartaglia, Niccolò. 1556. La Secunda Parte del General Trattato de’ Numeri et Misure. Venetia: Curtio Troiano.Google Scholar
  91. Tartaglia, Niccolò. 1560. La Sesta Parte del General Trattato de Numeri, et Misure. Venetia: Curtio Troiano.Google Scholar
  92. Van Egmond, Warren. 1985. A catalog of François Viète’s printed and manuscript works. In Mathemata: Festschrift für Helmuth Gericke, ed. Menso Folkerts and Uta Lindgren, 359–396. Stuttgart: F. Steiner Verlag Wiesbaden.Google Scholar
  93. Viète, François. 1579a. Canon Mathematicus seu Ad Triangula. Lutetiæ: Apud Ioannem Mettayer.Google Scholar
  94. Viète, François. 1579b. Universalium Inspectionum ad Canonem Mathematicum. Lutetiæ: Apud Ioannem Mettayer.Google Scholar
  95. Viète, François. 1591. In Artem Analyticem Isagoge. Turonis: Apud Iametium Mettayer.Google Scholar
  96. Viète, François. 1593a. Variorum de Rebus Mathematicis Responsorum, Liber VIII. Turonis: Apud Iamettium Mettayer.Google Scholar
  97. Viète, François. 1593b. Effectionum Geometricarum Canonica Recensio. (Published as the second part of (Viète 1593)).Google Scholar
  98. Viète, François. 1593c. Zeteticorum. (Published as the third part of (Viète 1593)).Google Scholar
  99. Viète, François. 1593d. Supplementum Geometriæ. Turonis: Excudebat Iametius Mettayer.Google Scholar
  100. Viète, François. 1595a. Ad Problema Quod omnibus Mathematicis totius orbis construendum proposuit Adrianus Romanus. Parisiis: Apud Iametium Mettayer.Google Scholar
  101. Viète, François. 1595b. Pseudo-Mesolabum & Alia Quædam Adiuncta Capitula. Parisiis: Apud Iamettium Mettayer.Google Scholar
  102. Viète, François. 1600a. De Numerosa Potestatum Ad Exegesim Resolutione. Parisiis: Excudebat David Le Clerc.Google Scholar
  103. Viète, François. 1600b. Apollonius Gallus. Parisiis: Excudebat David Le Clerc.Google Scholar
  104. Viète, François. 1615a. Ad Angularium Sectionum Analyticen. Parisiis: Apud Oliverivm de Varennes.Google Scholar
  105. Viète, François. 1615b. De Æquationum Recognitione et Emendatione Tractatus Duo. Parisiis: Ex Typographia Ioannes Laquehay.Google Scholar
  106. Viète, François. 1630. Les Cinq Livres des Zetetiques de Francois Viette (trans. and comm.: Vaulezard, Jean-Louis). Paris: Iulian Iacquin.Google Scholar
  107. Viète, François. 1646. Opera Mathematica, ed. Frans van Schooten. Lugduni Batavorum: Ex Officinâ Bonaventuræ & Abrahami Elzeviriorum, repr. 2001.Google Scholar
  108. Viète, François. 1983. The Analytic Art: Nine Studies in Algebra, Geometry, and Trigonometry from the Opus Restitutae Mathematicae Analyseos, seu, Algebrâ novâ by François Viète (trans: Witmer, T. Richard). Kent, Ohio: Kent State University. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of IndianapolisIndianapolisUSA

Personalised recommendations