Archive for History of Exact Sciences

, Volume 72, Issue 2, pp 145–189 | Cite as

Bisecting the trapezoid: tracing the origins of a Babylonian computation of Jupiter’s motion

  • Mathieu OssendrijverEmail author


Between ca. 400 and 50 BCE, Babylonian astronomers used mathematical methods for predicting ecliptical positions, times and other phenomena of the moon and the planets. Until recently these methods were thought to be of a purely arithmetic nature. A new interpretation of four Babylonian astronomical procedure texts with geometric computations has challenged this view. On these tablets, Jupiter’s total distance travelled along the ecliptic during a certain interval of time is computed from the area of a trapezoidal figure representing the planet’s changing daily displacement along the ecliptic. Moreover, the time when Jupiter reaches half the total distance is computed by bisecting the trapezoid into two smaller ones of equal area. In the present paper these procedures are traced back to precursors from Old Babylonian mathematics (1900–1700 BCE). Some implications of the use of geometric methods by Babylonian astronomers are also explored.



The Trustees of the British Museum are acknowledged for permission to study and publish the tablets kept in the British Museum. Christopher B.F. Walker is acknowledged for making available his catalogue of astronomical fragments in the Babylon collection of the British Museum.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Aaboe, A. 1964. Episodes from the early history of mathematics. New York: Random House.zbMATHGoogle Scholar
  2. Brack-Bernsen, L., and O. Schmidt. 1990. Bisectable Trapezia in Babylonian Mathematics. Centaurus 33: 1–38.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Britton, J.P. 2010. Studies in Babylonian Lunar Theory: Part III. The Introduction of the Uniform Zodiac. AHES 64: 617–663.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bruins, E.M., and M. Rutten. 1961. Textes Mathématiques de Suse. Mémoires de la Mission Archéologique en Iran 34. Paris: Paul Geuthner.zbMATHGoogle Scholar
  5. Clagett, M. 1968. Nicole Oresme and the Medieval Geometry of Qualities and Motions. A Treatise on the Uniformity and Difformity of Intensities known as Tractatus de configurationibus qualitatum et motuum. The University of Wisconsin Press: Madison and London.Google Scholar
  6. Edzard, D.O. 2003. Sumerian Grammar, Handbuch des Orients. Leiden: Brill.CrossRefGoogle Scholar
  7. Frank, C. 1928. Strassburger Keilschrifttexte in sumerischer und babylonischer Sprache. Berlin: De Gruyter.zbMATHGoogle Scholar
  8. Friberg, J. 1990. Mathematik. In Reallexikon der Assyriologie, ed. D.O. Edzard, 531–585. Berlin: De Gruyter.Google Scholar
  9. Friberg, J. 1997. Seeds and Reeds Continued. Another Metro-Mathematical Topic Text from Late Babylonian Uruk. Bagdhader Mitteilungen 28: 251–365.Google Scholar
  10. Friberg, J. 2000. Mathematics at Ur in the Old Babylonian period. Revue d’Assyriologie et d’archéologie orientale 94: 97–188.Google Scholar
  11. Friberg, J. 2005. Unexpected Links between Egyptian and Babylonian Mathematics. Singapore: World Scientific.CrossRefzbMATHGoogle Scholar
  12. Friberg, J. 2007a. A Remarkable Collection of Babylonian Mathematical Texts. New York: Springer.CrossRefzbMATHGoogle Scholar
  13. Friberg, J. 2007b. Amazing Traces of a Babylonian Origin in Greek Mathematics. Singapore: World Scientific.CrossRefzbMATHGoogle Scholar
  14. Friberg, J., and F. Al-Rawi. 2016. New Mathematical Cuneiform Texts. New York: Springer.CrossRefzbMATHGoogle Scholar
  15. Friberg, J., and A. George. 2010. Six More Mathematical Cuneiform Texts in the Schøyen Collection. In Essays and Texts in Honour of Martin Schøyen. Papyri Graecae Schøyen II, ed. D. Minutoli and R. Pintaudi, 123–195. Florence: Gonnelli.Google Scholar
  16. Gandz, S. 1948. Studies in Babylonian Mathematics I: Indeterminate Analysis in Babylonian Mathematics. Osiris 8: 12–40.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Høyrup, J. 1996. Changing trends in the historiography of Mesopotamian mathematics: an insider’s view. History of Science 34: 1–32.MathSciNetCrossRefGoogle Scholar
  18. Høyrup, J. 2002. Lengths, Widths, Surfaces. A Portrait of Old-Babylonian Algebra and its Kin. New York: Springer.CrossRefzbMATHGoogle Scholar
  19. Høyrup, J. 2017. What is “Geometric Algebra”, and What Has it Been in Historiography? AIMS Mathematics 2 (1): 128–160. Scholar
  20. Huber, P.J. 1955. Zu einem mathematischen Keilschrifttext (VAT 8512). Isis 46: 104–106.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Huber, P.J. 1957. Zur täglichen Bewegung des Jupiter nach babylonischen Texten. Zeitschrift für Assyriologie 52: 265–303.CrossRefGoogle Scholar
  22. Imhausen, A., and P. Pommerening (eds.). 2016. Translating Writings of Early Scholars in the Ancient Near East, Egypt. Methodological Aspects with Examples, De Gruyter: Greece and Rome.Google Scholar
  23. Jones, A. 1999. Astronomical Papyri from Oxyrhynchus, Memoirs of the American Philosophical Society 233 (Philadelphia)Google Scholar
  24. Muroi, K. 2001. Inheritance Problems in the Susa Mathematical Text No. 26. Historia Scientiarum 10: 226–234.MathSciNetzbMATHGoogle Scholar
  25. Neugebauer, O. 1935–1937. Mathematische Keilschrifttexte, Vols. I–III . Berlin: Springer.Google Scholar
  26. Neugebauer, O. 1955. Astronomical Cuneiform Texts. London: Humphries.CrossRefzbMATHGoogle Scholar
  27. Neugebauer, O. 1975. A History of Ancient Mathematical Astronomy. New York: Springer.CrossRefzbMATHGoogle Scholar
  28. Neugebauer, O. 1988. A Babylonian Lunar Ephemeris from Roman Egypt, In A Scientific Humanist: Studies in Memory of Abraham Sachs. Occasional publications of the Samuel Noah Kramer Fund 9 ed. Leichty, E., Ellis M., and Gerardi P., 301–304. Philadelphia: University Museum.Google Scholar
  29. Neugebauer, O., and A. Sachs. 1945. (Reprint 1986), Mathematical Cuneiform Texts. New Haven: American Oriental Society.Google Scholar
  30. Ossendrijver, M. 2012. Babylonian Mathematical Astronomy. Procedure Texts. New York: Springer.CrossRefzbMATHGoogle Scholar
  31. Ossendrijver, M. 2016. Ancient Babylonian astronomers calculated Jupiter’s position from the area under a time-velocity graph. Science 351: 482–484. Supplementary Materials 1–19.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Ossendrijver, M. 2017. New results on a Babylonian scheme for Jupiter’s motion along the zodiac. Journal for Near Eastern Studies 76: 231–247.CrossRefGoogle Scholar
  33. Ossendrijver, M. 2018a. The Trapezoid Procedures: Area Computations in Babylonian Astronomy In K. Chemla (ed.). Proceedings of the SAW Conference, Paris, forthcoming.Google Scholar
  34. Ossendrijver, M. 2018b. Scholarly Mathematics in the Rēš Temple. In C. Proust and J. Steele (eds.), Scholars and Scholarship in Late Babylonian Uruk (Brill, forthcoming).Google Scholar
  35. Pedersen, O. 1974. Early Physics and Astronomy. A Historical Introduction. Cambridge: Cambridge University Press.Google Scholar
  36. Powell, M.A. 1987–1990. Masse und Gewichte. In D. O. Edzard (ed.), Reallexikon der Assyriologie und Vorderasiatischen Archäologie. Siebter Band. Libanukšabaš– Medizin (Berlin—New York: De Gruyter), 457–517.Google Scholar
  37. Proust, C. 2012. Problèmes de partage: des cadastres à l’arithmétique. website CultureMATH.
  38. Robson, E. 1999. Mesopotamian Mathematics 2000–1600 BC. Technical Constants in Bureaucracy and Education. Oxford: Clarendon Press.zbMATHGoogle Scholar
  39. Robson, E. 2007. Mesopotamian Mathematics. In Katz, V. (ed.), The Mathematics of Egypt, Mesopotamia, China, India, and Islam. A Sourcebook (Princeton University Press), 57–186.Google Scholar
  40. Robson, E. 2008. Mathematics in Ancient Iraq. A Social History. Princeton: Princeton University Press.zbMATHGoogle Scholar
  41. Sylla, E.D. 1982. The Oxford calculators. In N. Kretzmann, A. Kenny, J. Pinborg (eds.), The Cambridge History of Later Medieval Philosophy, 540–563.Google Scholar
  42. Thureau-Dangin, F. 1934. Une nouvelle tablette mathématique de Warka. Revue d’Assyriologie 31: 61–69.zbMATHGoogle Scholar
  43. Thureau-Dangin, F. 1938. Textes Mathématiques Babyloniens. Leiden: Brill.zbMATHGoogle Scholar
  44. Vaiman, A.A. 1961. Shumero-Vavilonskaya matematika III–I tysyacheletiya do n. e. (Izdatel’stvo Vostochnoy Literatury, Moscow).Google Scholar
  45. van der Waerden, B.L. 1966. Erwachende Wissenschaft I. Ägyptische, babylonische und griechische Mathematik. Basel–Stuttgart: Birkhäuser.zbMATHGoogle Scholar
  46. Vogel, K. 1958. Ist die babylonische Mathematik sumerisch oder akkadisch? Mathematische Nachrichten 18: 377–382.MathSciNetCrossRefzbMATHGoogle Scholar
  47. Vogel, K. 1959. Vorgriechische Mathematik II. Die Mathematik der Babylonier. Hannover: H. Schroedel.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Excellence Cluster TOPOIHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations