Advertisement

Archive for History of Exact Sciences

, Volume 70, Issue 3, pp 267–291 | Cite as

A forgotten solar model

  • S. Mohammad Mozaffari
Article

Abstract

This paper analyses a kinematic model for the solar motion by Quṭb al-Dīn al-Shīrāzī, a thirteenth-century Iranian astronomer at the Marāgha observatory in northwestern Iran. The purpose of this model is to account for the continuous decrease of the obliquity of the ecliptic and the solar eccentricity since the time of Ptolemy. Shīrāzī puts forward different versions of the model in his three major cosmographical works. In the final version, in his Tuḥfa, the mean ecliptic is defined by an eccentric of fixed mean eccentricity and a mean obliquity fixed with respect to the celestial equator, and the center of the epicycle, which is inclined to the eccentric, moves on the eccentric with an annual period. By an additional slow motion of the sun on the epicycle, the true eccentricity of the solar deferent, defined by the annual motion of the sun, and the sun’s extreme declination from the equator change, accounting for the reduction of the eccentricity and the obliquity of the ecliptic since the time of Ptolemy.

Keywords

Solar Model Maximum Declination Celestial Equator Geometrical Device Venus Transit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbud, F. 1962. The planetary theory of Ibn al-Shāṭir: Reduction of the geometric models to numerical tables. Isis 53: 492–499.CrossRefzbMATHGoogle Scholar
  2. Bagheri, M., J. P., Hogendijk, and N., Yano. 2010–2011. Kūshyār ibn Labbān Gīlānī’s treatise on the distances and sizes of the celestial bodies. Zeitschrift für Geschichte der arabisch-islamischen Wissenschaften 19: 77–120.Google Scholar
  3. Bearman, P., Th. Bianquis, C.E. Bosworth, E. van Donzel, and W.P. Heinrichs. 1960–2005. [\(EI_2\):] Encyclopaedia of Islam, 2nd ed., 12 Vols. Leiden: Brill.Google Scholar
  4. Al-Bīrūnī, Abū al-Rayḥān. 1954–1956. al-Qānūn al-mas’ūdī (Mas‘ūdic canons), 3 Vols. Hyderabad: Osmania Bureau.Google Scholar
  5. Calvo, E. 1998. Astronomical theories related to the Sun in Ibn al-Hā’im’s al-Zīj al-Kāmil fī ’l-Ta‘ālīm. Zeitschrift für Geschichte der Arabisch-Islamischen Wissenschaften 12: 51–111.Google Scholar
  6. Casulleras, J., Samsó, J. (eds.). 1996. From Baghdad to Barcelona: Studies in the Islamic exact sciences in honour of Prof. Juan Vernet. Barcelona: University of Barcelona.Google Scholar
  7. Caussin de Perceval, J.-J.-A. 1804. Le livre de la grande table hakémite, Observée par le Sheikh, \(\ldots \), ebn Iounis. Notices et Extraits des Manuscrits de la Bibliothèque Nationale 7: 16–240.Google Scholar
  8. Clark, D., and F.R. Stephenson. 1978. An interpretation of the pre-telescopic sunspot records from the orient. Quarterly Journal Royal Astronomical Society 19: 387–410.Google Scholar
  9. Comes, M. 1996. The accession and recession theory in al-Andalus and the North of Africa. In Casulleras and Samsó 1996, 349–364.Google Scholar
  10. Comes, M. 2001. Ibn al-Hā’im’s trepidation model. Suhayl 2: 291–408.MathSciNetzbMATHGoogle Scholar
  11. Comes, M. 2004. The possible scientific exchange between the courts of Hulaghu and Alfonso X. In Science, techniques et instruments dans le monde Iranien, ed. N. Pourjavady, and Ž. Vesel. Téhéran: Institut Français de Recherche en Iran.Google Scholar
  12. Dorce, C. 2002–2003. The Tāj al-azyāj of Muḥyī al-Dīn al-Maghribī (d. 1283): Methods of computation. Suhayl 3: 193–212.Google Scholar
  13. Dorce, C. 2003. El Tā \(\hat{y}\) al-azyā\(\hat{y}\) de Muḥyī al-Dīn al-Maghribī. In Anuari de Filologia, Vol. 25, Secció B, Número 5. Barcelona: University of Barcelona.Google Scholar
  14. Espenak, F. NASA’s six millennium catalog of venus transits: 2000 BCE to 4000 CE. Retrieved from http://eclipse.gsfc.nasa.gov/transit/catalog/VenusCatalog.html.
  15. Gamini, A.M., and H. Masoumi H. 2013. Quṭb al-Dīn al-Shīrāzī and the empirical origin of Ptolemy’s equant in his model of the superior planets. Arabic Science and Philosophy 23: 47–67.Google Scholar
  16. Gillipsie, C.C. et al. (ed.) 1970–1980. [DSB:] Dictionary of scientific biography, 16 Vols. New York: Charles Scribner’s Sons.Google Scholar
  17. Goldstein, B.R. 1965. On the theory of Trepidation, according to Thābit b. Qurra and al-Zarqāllu and its implications for homocentric planetary theory. Centaurus 10: 232–247.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Goldstein, B.R. 1967. The Arabic version of Ptolemy’s Planetary Hypotheses. Transactions of the American Philosophical Society 57: 3–55.CrossRefGoogle Scholar
  19. Goldstein, B.R. 1969. Some medieval reports of Venus and Mercury transits. Centaurus 14: 49–59.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Goldstein, B.R. 1971. Al-Biṭrūjī: On the principles of astronomy, 2 Vols. New Haven, London: Yale University Press.Google Scholar
  21. Goldstein, B.R. 1994. Historical perspectives on Copernicus’s account of precession. Journal for the History of Astronomy 25: 189–197.MathSciNetCrossRefGoogle Scholar
  22. Goldstein, B.R., and N. Swerdlow. 1970. Planetary distances and sizes in an anonymous Arabic treatise preserved in Bodleian Ms. Marsh 621. Centaurus 15: 135–170.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Hartner, W. 1969. Naṣīr al-Dīn al-Ṭūsī’s Lunar theory. Physis 11: 287–304.MathSciNetzbMATHGoogle Scholar
  24. Hartner, W. 1971. Trepidation and planetary theories, common features in late Islamic and early Renaissance astronomy. In Proceedings of international conference Oriente e Occidente nel Medioevo: Filosofia e Scienze, 609–629. Rome: Accad. Naz. dei Lincei. Repr. Hartner 1984, vol. 2, 267–287.Google Scholar
  25. Hartner, W. 1973. Copernicus, the man, the work, and its history. Proceedings of the American Philosophical Society 117 (Symposium on Copernicus): 413–422.Google Scholar
  26. Hartner, W. 1984. Oriens-Occidens, 2 Vols. Hildesheim: Georg Olms Verlag.Google Scholar
  27. Hartner, W., and M. Schramm. 1961. Al-Bīrūnī and the theory of the solar apogee: An example of originality in Arabic science. In Scientific Change. Historical studies in the intellectual, social and technical conditions for scientific discovery and technical invention, from antiquity to the present, ed. A.C. Crombie. Symposium on the history of science, University of Oxford, 206–218. London: Heinemann.Google Scholar
  28. Herschel, J.F.W. 1851. Preliminary discourse on the study of natural philosophy. London: Printed for Longman, Brown, Green & Longmans.Google Scholar
  29. Hockey, T. et al. (ed.) 2007. [BEA:] The biographical encyclopedia of astronomers. Berlin: Springer.Google Scholar
  30. Ḥunayn b. Isḥāq and Thābit b. Qurra (tr.), Arabic Almagest, MSS. S: Iran, Tehran, Sipahsālār Library, no. 594 (copied in 480 H/1087–8 AD), PN: USA, Rare Book & Manuscript Library of University of Pennsylvania, no. LJS 268 (written in an Arabic Maghribī/Andalusian script at Spain in 783 H/1381 AD; some folios between 37v and 38r, corresponding to Almagest III.3–IV.9, are omitted).Google Scholar
  31. Ibn Yūnus, ‘Alī b. ‘Abd al-Raḥmān b. Aḥmad, Zīj al-kabīr al-Ḥākimī, MS. L: Leiden, no. Or. 143, MS. O: Oxford Bodleian Library, no. Hunt 331.Google Scholar
  32. Al-Kāshī, Jamshīd Ghiyāth al-Dīn, Khāqānī zīj, MS. IO: London: India Office, no. 430, MS. P: Iran: Parliament Library, no. 6198.Google Scholar
  33. Al-Kāshī, Jamshīd Ghiyāth al-Dīn, Sullam al-samā’, MS. Iran: National Library, no. 1174059, ff. 1v–15v (copied in Rajab 1277/ January–February 1861).Google Scholar
  34. Kennedy, E.S. 1956. A survey of Islamic astronomical tables. Transactions of the American Philosophical Society 46: 123–177.Google Scholar
  35. Kennedy, E.S. 1966. Late medieval planetary theory. Isis 57: 365–378.CrossRefzbMATHGoogle Scholar
  36. Kennedy, E.S. 1973. A commentary upon Bīrūnī’s Kitāb Taḥdīd al-Amākin. Beirut: American University of Beirut.zbMATHGoogle Scholar
  37. Kennedy, E.S. 1998. Astronomy and astrology in the medieval Islamic world. Aldershot: Ashgate-Variorum.Google Scholar
  38. Kennedy, E.S. et al. 1983. Studies in the Islamic exact sciences. Beirut: American University of Beirut.Google Scholar
  39. Kennedy, E.S., and V. Roberts. 1959. The planetary theory of Ibn al-Shāṭir. Isis 50: 227–235.CrossRefzbMATHGoogle Scholar
  40. Kennedy, E.S., and I. Ghanem (eds.). 1976. The Life and Work of Ibn al-Shāṭir, an Arab Astronomer of the Fourteenth Century. Aleppo: Institute for History of Arabic Science.Google Scholar
  41. King, D.A. 1999. Aspects of Fatimid astronomy: From hard-core mathematical astronomy to architectural orientations in Cairo. In L’Égypte Fatimide: son art et son histoire - Actes du colloqie organisé à Paris les 28, 29 et 30 mai 1998, ed. M. Barrucand, 497–517. Paris: Presses de l’Université de Paris-Sorbonne.Google Scholar
  42. King, D.A. 2004/2005. In synchrony with the heavens: Studies in astronomical timekeeping and instrumentation in medieval Islamic civilization, 2 Vols. Leiden-Boston: Brill.Google Scholar
  43. King, D.A., Saliba, G. (eds.). 1987. From deferent to equant: A volume of studies on the history of science of the ancient and medieval Near East in honor of E.S. Kennedy. Annals of the New York Academy of Sciences, vol. 500.Google Scholar
  44. Koertge, N. 2008. [NDSB:] New dictionary of scientific biography, 8 Vols. Detroit: Charles Scribner’s Sons.Google Scholar
  45. Kunitzsch, P. 1986. The star catalogue commonly appended to the Alfonsine tables. Journal for the History of Astronomy 17: 89–98. Repr. Kunitzsch 1989, Trace XXII.Google Scholar
  46. Kunitzsch, P. 1989. The Arabs and the stars. Northampton: Variorum.Google Scholar
  47. Al-Maghribī, Muḥyī al-Dīn, Adwār al-anwār, MS. M: Iran, Mashhad, Holy Shrine Library, no. 332; MS. CB: Ireland, Dublin, Chester Beatty, no. 3665.Google Scholar
  48. Al-Maghribī, Muḥyī al-Dīn, Talkhīṣ al-majisṭī, MS. Leiden: Universiteitsbibliotheek, Or. 110.Google Scholar
  49. Mancha, J.L. 1998. On Ibn al-Kammād’s table for trepidation. Archive for History of Exact Sciences 52: 1–11.MathSciNetCrossRefzbMATHGoogle Scholar
  50. Mancha, J.L. 2004. Al-Biṭrūjī’s theory of the motions of the fixed stars. Archive for History of Exact Sciences 58: 143–182.MathSciNetCrossRefzbMATHGoogle Scholar
  51. Mercier, R. 1976/1977. Studies in the Medieval conception of precession. Archives Internationales d’Histoire des Sciences, Part 1: 25: 197–220, Part 2, 26: 33–71.Google Scholar
  52. Mercier, R. 1996. Accession and recession: Reconstruction of the parameters. In Casulleras and Samsó 1996, 299–347.Google Scholar
  53. Moesgaard, K.P. 1989. Tycho Brahe’s discovery of changes in star latitudes. Centaurus 32: 310–323.MathSciNetCrossRefzbMATHGoogle Scholar
  54. Mozaffari, S.M. 2013a. Limitations of methods: The accuracy of the values measured for the Earth’s/Sun’s orbital elements in the Middle East, A.D. 800 and 1500. Journal for the history of astronomy, Part 1: 44(3): 313–336, Part 2: 44(4): 389–411.Google Scholar
  55. Mozaffari, S.M. 2013b. Wābkanawī’s prediction and calculations of the annular solar eclipse of 30 January 1283. Historia Mathematica 40: 235–261.MathSciNetCrossRefzbMATHGoogle Scholar
  56. Mozaffari, S.M. 2014. Muḥyī al-Dīn al-Maghribī’s lunar measurements at the Maragha observatory. Archive for History of Exact Sciences 68: 67–120.CrossRefzbMATHGoogle Scholar
  57. Mozaffari, S.M., and J.M. Steele. 2015. Solar and lunar observations at Istanbul in the 1570s. Archive for History of Exact Sciences 69: 343–362.MathSciNetCrossRefzbMATHGoogle Scholar
  58. Nallino, C.A. (ed.), [1899–1907] 1969, Al-Battani sive Albatenii Opus Astronomicum. Publicazioni del Reale osservatorio di Brera in Milano, n. XL, pte. I–III, Milan: Mediolani Insubrum. The Reprint of Nallino’s edition: Minerva, Frankfurt, 1969.Google Scholar
  59. Neugebauer, O. 1956. The transmission of planetary theories in ancient and medieval astronomy. Scripta Mathematica 22: 165–192. Repr. Neugebauer 1983, 129–156.Google Scholar
  60. Neugebauer, O. 1962. Thabit ben Qurra on the solar year and on the motion of the eighth sphere. Proceedings of the American Philosophical Society 106: 264–299.Google Scholar
  61. Neugebauer, O. 1968. On the planetary theory of copernicus. Vistas In Astronomy 10: 89–103. Repr. Neugebauer 1983, 491–505.Google Scholar
  62. Neugebauer, O. 1975. A history of ancient mathematical astronomy. Berlin, Heidelberg, New York: Springer.CrossRefzbMATHGoogle Scholar
  63. Neugebauer, O. 1983. Astronomy and history selected essays. New York: Springer.CrossRefzbMATHGoogle Scholar
  64. Niazi, K. 2014. Quṭb al-Dīn al-Shīrāzī and the Configuration of the Heavens; A Comparison of Texts and Models. Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  65. North, J.D. 1967. Medieval star catalogues and the movement of the eighth sphere. Archives Internationales d’Histoire des Sciences 20: 71–83.zbMATHGoogle Scholar
  66. Paschos, E.A., and P. Sotiroudis. 1998. The schemata of the stars: Byzantine astronomy from A.D. 1300. Singapore: World Scientific.CrossRefzbMATHGoogle Scholar
  67. Pedersen, O. 1974. A survey of Almagest. Odense: Odense University Press, 1974. With annotation and new commentary by A. Jones, New York: Springer, 2010.Google Scholar
  68. Pourjavady, R., and S. Schmidtke. 2004. Quṭb al-Dīn al-Shīrāzī’s (634/1236–710/1311) Durrat al-Taj and its sources (Studies on Quṭb al-Dīn al-Shīrāzī I). Journal Asiatique 292: 311–330.CrossRefGoogle Scholar
  69. Pourjavady, R., and S. Schmidtke. 2007. The Quṭb al-Dīn al-Shīrāzī (d. 710/1311) codex (MS Mar‘ashī 12868) [Studies on Quṭb al-Dīn al-Shīrāzī, II]. Studia Iranica 36: 279–301.CrossRefGoogle Scholar
  70. Pourjavady, R., and S. Schmidtke. 2009. Quṭb al-Dīn al-Shīrāzī (d. 710/1311) as a teacher: An analysis of his ijāzāt (Studies on Quṭb al-Dīn al-Shīrāzī III). Journal Asiatique 297: 15–55.CrossRefGoogle Scholar
  71. Qūshčī, ‘Alī b. Muḥammad, Sharḥ-i Zīj-i Ulugh Beg (Commentary on the Zīj of Ulugh Beg), MSS. N: Iran, National Library, no. 20127-5, P: Iran, Parliament Library, no. 6375/1, PN: USA, Rare Book & Manuscript Library of University of Pennsylvania, no. LJS 400.Google Scholar
  72. Ragep, F.J. 1987. The two versions of the Ṭūsī couple. In King and Saliba 1987, 329–356.Google Scholar
  73. Roberts, V. 1957. The solar and lunar theory of Ibn ash-Shāṭir, a pre-Copernican Copernican model. Isis 48: 428–432.CrossRefzbMATHGoogle Scholar
  74. Roberts, V. 1966. The planetary theory of Ibn al-Shāṭir: Latitudes of the planets. Isis 57: 208–219.CrossRefzbMATHGoogle Scholar
  75. Rosenfeld, B.A., and E. İhsanoğlu. 2003. Mathematicians, astronomers, and other scholars of Islamic civilization and their Works (7th–19th c.). Istanbul: IRCICA.Google Scholar
  76. Said, S.S., and F.R. Stephenson. 1995. Precision of medieval Islamic measurements of solar altitudes and equinox times. Journal for the History of Astronomy 26: 117–132.MathSciNetCrossRefGoogle Scholar
  77. Saliba, G. 1987. The Height of the Atmosphere According to Mu’ayyad al-Dīn al-‘Urḍī, Quṭb al-Dīn Al-Shīrazī, and Ibn Mu‘ādh. In King and Saliba 1987, 445–465.Google Scholar
  78. Saliba, G. 1994. A history of Arabic astronomy: Planetary theories during the golden age of Islam. New York: New York University.zbMATHGoogle Scholar
  79. Saliba, G., and E.S., Kennedy. 1991. The spherical case of the Ṭūsī couple. Arabic Science and Philosophy 1: 285–291. Repr. Kennedy 1998, Trace VI.Google Scholar
  80. Samsó, J. 1987. Al-Zarqāl, Alfonso X and Peter of Aragon on the solar equation. In King and Saliba 1987, 467–476.Google Scholar
  81. Samsó, J. 1994a. Islamic astronomy and medieval Spain. Ashgate: Variorum.Google Scholar
  82. Samsó, J. 1994b. Trepidation in al-Andalus in the 11th Century. In Samsó 1994a, Trace VIII.Google Scholar
  83. Samsó, J. 1998. An outline of the history of Maghribi zījes from the end of the thirteenth century. Journal for the History of Astronomy 29: 93–102. Repr. Samsó 2007, Trace XI.Google Scholar
  84. Samsó, J. 2001. Astronomical observations in the Maghrib in the fourteenth and fifteenth centuries. Science in Context 14: 165–178. Repr. Samsó 2007, Trace XII.Google Scholar
  85. Samsó, J. 2007. Astronomy and astrology in al-Andalus and the Maghrib. Aldershot, Burlington: Ashgate.Google Scholar
  86. Samsó, J., and E. Millás. 1994. Ibn al-Bannā’, Ibn Isḥāq and Ibn al-Zarqālluh’s Solar Theory. In Samsó 1994a, Trace X.Google Scholar
  87. Samsó, J., D.A. King, and B.R. Goldstein. 2001. Astronomical handbooks and tables from the Islamic world (750–1900): An interim report. Suhayl 2: 9–105.MathSciNetzbMATHGoogle Scholar
  88. Sezgin, F. 1978. Geschichte des arabischen Schrifttums, Band VI: Astronomie bis ca. 430 H. Brill: Leiden.zbMATHGoogle Scholar
  89. Sheynin, O.B. 1973. Mathematical treatment of astronomical observations (a historical essay). Archive for History of Exact Sciences 11: 97–126.MathSciNetCrossRefzbMATHGoogle Scholar
  90. Sheynin, O.B. 1992. Al-Bīrūnī and the mathematical treatment of observations. Arabic Sciences and Philosophy 2: 299–306.MathSciNetCrossRefzbMATHGoogle Scholar
  91. Al-Shīrāzī, Quṭb al-Dīn, Ikhtiyārāt-i muẓaffarī (Selections by Muẓaffar al-Dīn; dedicated to Muẓaffar al-Dīn Bulāq Arsalān (d. 1305), a local ruler), MS. Iran, National Library, no. 3074f.Google Scholar
  92. Al-Shīrāzī, Quṭb al-Dīn, Nihāyat al-idrāk fī dirāyat al-aflāk (Limit of comprehension in the knowledge of celestial heavens), MSS. B: Berlin, no. Ahlwart 5682 = Petermann I 674 (copied about the end of Dhi al-qa‘da 726/October 1326 as mentioned on the first page); P1: Iran, Parliament Library, no. 6457 (copied at Ulugh Beg’s school at Samarqand one month between Dhi al-qa‘da and Dhi al-hijja 844/ca. April–May 1441); P2: Iran, Parliament Library, no. 16008 (5 Muḥarram 1120/27 March 1708).Google Scholar
  93. Al-Shīrāzī, Quṭb al-Dīn, Tuḥfa al-shāhiyya fi ’l-hay’a (Gift to the king on astronomy), MS. Iran, Parliament Library, no. 6130.Google Scholar
  94. Swerdlow, N.M. 1973. The derivation and first draft of Copernicus’s planetary theory: A translation of the commentariolus with commentary. Proceedings of the American Philosophical Society 117: 423–512.Google Scholar
  95. Swerdlow, N.M. 1975. On Copernicus’ theory of precession. In The Copernican achievement, ed. R. Westman, 49–98. Berekeley, Los Angeles, London: University of California Press.Google Scholar
  96. Swerdlow, N.M. 2005. Ptolemy’s theories of the latitude of the planets in the Almagest, Handy Tables, and Planetary Hypotheses. In Wrong for the right reasons, ed. J.Z. Buchwald, and A. Franklin, 41–71. The Netherlands: Springer.Google Scholar
  97. Swerdlow, N.M. 2009. The lunar theories of Tycho Brahe and Christian Longomontanus in the Progymnasmata and Astronomia Danica. Annals of Science 66: 5–58.MathSciNetCrossRefGoogle Scholar
  98. Swerdlow, N.M., and O. Neugebauer. 1984. Mathematical astronomy in Copernicus’s De revolutionibus. New York, Berlin, Heidelberg, Tokyo: Springer.CrossRefzbMATHGoogle Scholar
  99. Taqī al-Dīn Muḥammad b. Ma‘rūf, Sidrat muntahā al-afkār fī malakūt al-falak al-dawwār (The Lotus Tree in the Seventh Heaven of Reflection), MS. K: Istanbul, Kandilli Observatory, no. 208/1 (up to f. 48v).Google Scholar
  100. Toomer, G.J. 1969. The solar theory of az-Zarqāl: A history of errors. Centaurus 14: 306–336.MathSciNetCrossRefzbMATHGoogle Scholar
  101. Toomer, G.J. 1987. The solar theory of az-Zarqāl: An epilogue. In King and Saliba 1987, 513–519.Google Scholar
  102. Toomer, G.J. (ed.). 1998. Ptolemy’s Almagest. Princeton: Princeton University Press.Google Scholar
  103. Al-Ṭūsī, Naṣīr al-Dīn, al-Risāla al-Mu‘īniyya, MS. Iran, Parliament Library, no. 6347.Google Scholar
  104. Al-Ṭūsī, Naṣīr al-Dīn, Īlkhānī zīj, MSS. C: University of California, Caro Minasian Collection, no. 1462; T: University of Tehran, Ḥikmat Collection, no. 165 + Suppl. P: Iran, Parliament Library, no. 6517 (Remark: The latter is not actually a separate MS., but contains 31 folios missing from MS. T. The chapters and tables in MS. T are badly out of order, presumably owing to the folios having been bound in disorder); P: Iran, Parliament Library, no. 181; M1: Iran, Mashhad, Holy Shrine Library, no. 5332a; M2: Iran, Qum, Mar‘ashī Library, no. 13230.Google Scholar
  105. Al-Ṭūsī, Naṣīr al-Dīn, Taḥrīr al-majisṭī (Exposition of the Almagest), MSS. Iran, Parliament Library, P1: no. 3853, P2: no. 6357, P3: no. 6395.Google Scholar
  106. Al-Ṭūsī, Naṣīr al-Dīn. 1993. Memoir on astronomy (al-Tadhkira fī’ilm al-hay’a). ed. J., Ragep, 2 Vols. New York: Springer.Google Scholar
  107. Ulugh Beg, Sulṭānī Zīj, MS. P1: Iran, Parliament Library, no. 72; MS. P2: Iran, Parliament Library, no. 6027.Google Scholar
  108. Vaquero, J.M., and M.C. Gallego. 2002. Evidence for a sunspot in A.D. 939 in an Arabian Source. Solar Physics 206: 209–211.CrossRefGoogle Scholar
  109. Yau, K.K.C., and F.R. Stephenson. 1988. A revised catalogue of Far Eastern observations of sunspots (165 BC to AD 1918). Quarterly Journal of the Royal Astronomical Society 29: 175–197.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)MaraghaIran

Personalised recommendations