Advertisement

Archive for History of Exact Sciences

, Volume 69, Issue 3, pp 257–289 | Cite as

The casus irreducibilis in Cardano’s Ars Magna and De Regula Aliza

  • Sara Confalonieri
Article

Abstract

In Cardano’s classification in the Ars Magna (1545, 1570), the cubic equations were arranged in thirteen families. This paper examines the well-known solution methods for the families \(x^3 + a_1x = a_0\) and \(x^3 = a_1x + a_0\) and then considers thoroughly the systematic interconnections between these two families and the remaining ones and provides a diagram to visualize the results clearly. In the analysis of these solution methods, we pay particular attention to the appearance of the square roots of negative numbers even when all the solutions are real—the so-called casus irreducibilis. The structure that comes to light enables us to fully appreciate the impact that the difficulty entailed by the casus irreducibilis had on Cardano’s construction in the Ars Magna. Cardano tried to patch matters first in the Ars Magna itself and then in the De Regula Aliza (1570). We sketch the former briefly and analyze the latter in detail because Cardano considered it the ultimate solution. In particular, we examine one widespread technique that is based on what I have called splittings.

Keywords

Solution Method Negative Number Degree Term Chapter XVII Algebra Treatise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bashmakova, I., and G. Smirnova. 2000. The beginnings and evolution of algebra. Washington, DC: The Mathematical Association of America.zbMATHGoogle Scholar
  2. Betti, G.L. 2009. Cardano a Bologna e la sua polemica con il Tartaglia nel ricordo di un contemporaneo. Bruniana e campanelliana 15: 159–169.Google Scholar
  3. Bortolotti, E. 1926. I contributi del Tartaglia, del Cardano, del Ferrari e della scuola matematica bolognese alla teoria algebrica delle equazioni cubiche. Studi e memorie per la storia dell’Università di Bologna 10: 55–108.Google Scholar
  4. Boyer, C.B. 1991. A history of mathematics, 2nd ed. New York: Wiley.zbMATHGoogle Scholar
  5. Cantor, M. 1892. Vorlesungen ber die Geschichte der Mathematik, vol. 2. Leipzig: Teubner.Google Scholar
  6. Cardano, G. 1544. De sapientia libri quinque. Eiusdem De consolatione libri tres, alias æditi, sed nunc ab eodem authore recogniti. Eiusdem De libris propriis, liber unus. Omnia locupleti indice decorata, Johannes Petreius, Nuremberg, chap Libellus de libris propriis, cuius titulus est ephemerus, 419–431.Google Scholar
  7. Cardano, G. 1545. Hieronymi Cardani, præstantissimi mathematici, philosophi, ac medici, Artis magnae sive de regulis algebraicis, lib. unus. Qui et totius operis de arithmetica, quod Opus perfectum inscripsit, est in ordine decimus. Iohannes Petrius, Nuremberg.Google Scholar
  8. Cardano, G. 1554. Hieronymi Cardani mediolanensis medici De subtilitate libri XXI nunc demum recogniti atque perfecti. Basel: Ludovicum Licium.Google Scholar
  9. Cardano, G. 1557. Liber De libris propriis, eorumque ordine et usu, ac de mirabilibus operibus in arte medica per ipsum factis. Lyon: Guillaume Rouill.Google Scholar
  10. Cardano, G. 1562. Somniorum synestesiorum, omnis generis insomnia explicantes libri IIII. Quibus accedunt eiusdem hæc etiam: De libris propriis. De curationibus et prædictionibus admirandis. Neronis encomium. Geometriæ encomium. De uno. Actio in Thessalicum medicum. De secretis. De gemmis et coloribus. Dialogus de morte. [Dialogus] de humanis consiliis, tetim inscriptus. Item ad somniorum libros pertinentia: De minimis et propinquis. De summo bono, Heinrich Petri, Basel, chap De libris propriis, eorumque usu, liber recognitus, 1–116.Google Scholar
  11. Cardano, G. 1566. Heorinymi Cardani mediolanensis civisque bononiensis, Ars curandi parva, quae est absolutiss. medend. methodus, et alia, nunc primum aedita, opera, in duos tomos diuisa, quae versa pagina indicabit; omnia autem qualia sint autoris epistola vere praedicat. Basel: Officina Henricpetrina.Google Scholar
  12. Cardano, G. 1570a. Hieronymi Cardani mediolanensis, civisque bononiensis, philosophi, medici et mathematici clarissimi, Opus novum de proportionibus numerorum, motuum, ponderum, sonorum, aliarumque rerum mensurandarum, non solum geometrico more stabilitum, sed etiam varijs experimentis et observationibus rerum in natura, solerti demonstratione illustratum, ad multiplices usus accommodatum, et in V libros digestum. Prætera Artis magnæ, sive de regulis algebraicis, liber unus, abstrusissimus et inexhaustus plane totius arithmeticæ thesaurus, ab authore recens multis in locis recognitus et auctus. Item De aliza regula liber, hoc est, algebraicæ logisticæ suæ, numeros recondita numerandi subtilitate, secundum geometricas quantitates inquirentis, necessaria coronis, nunc demum in lucem edita, Oficina Henricpetrina, Basel, chap Artis magnae sive de regulis algebraicis, lib. unus. Qui et totius operis de arithmetica, quod Opus perfectum inscripsit, est in ordine decimus. Ars magna, quam volgo cossam vocant, sive regulas algebraicas, per D. Hieronymum Cardanum in quadraginta capitula redacta, et est liber decimus suæ Arithmeticæ.Google Scholar
  13. Cardano, G. 1570b. Hieronymi Cardani mediolanensis, civisque bononiensis, philosophi, medici et mathematici clarissimi, Opus novum de proportionibus numerorum, motuum, ponderum, sonorum, aliarumque rerum mensurandarum, non solum geometrico more stabilitum, sed etiam varijs experimentis et observationibus rerum in natura, solerti demonstratione illustratum, ad multiplices usus accommodatum, et in V libros digestum. Prætera Artis magnæ, sive de regulis algebraicis, liber unus, abstrusissimus et inexhaustus plane totius arithmeticæ thesaurus, ab authore recens multis in locis recognitus et auctus. Item De aliza regula liber, hoc est, algebraicæ logisticæ suæ, numeros recondita numerandi subtilitate, secundum geometricas quantitates inquirentis, necessaria coronis, nunc demum in lucem edita, Oficina Henricpetrina, Basel, chap De aliza regula libellus, hoc est Operis perfecti sui sive algebraicæ Logisticæ, numeros recondita numerandi subtilitate, secundum geometricas quantitates inquirenti, necessaria coronis, nunc demum in lucem editæ.Google Scholar
  14. Cardano, G. 1663a. Hieronymi Cardani mediolanensis Opera omnia in decem tomos digesta, vol 4, Ioannis Antonii Huguetan and Marci Antonii Ravaud, Lyon, chap Sermo de plus et minus. Edited by Charles Spon.Google Scholar
  15. Cardano, G. 1663b. Hieronymi Cardani mediolanensis Opera omnia in decem tomos digesta, vol 1, Ioannis Antonii Huguetan and Marci Antonii Ravaud, Lyon, chap “Liber a me conscripti, quo tempore, cur, quid acciderit”, Hieronymi Cardani De propria vita, liber (1576), pp 1–54. Edited by Charles Spon.Google Scholar
  16. Cardano, G. 1998. De libris propriis [MS 1550], edited by Baldi, Marialuisa and Canziani, Guido. Rivista di storia della filosofia 4:767–98, with the foliation (1–12r) of the MS F II.38 Nr 1, Öffentliche Bibliothek der Universität Basel.Google Scholar
  17. Cardano, G. 2004. De libris propriis. The editions of 1544, 1550, 1557, 1562, with supplementary material. Milan: Franco Angeli. Edited by Ian Maclean.Google Scholar
  18. Commandino, F. 1572. Euclidis Elementorum libri XV. Pisa: Jacobus Chriegber.Google Scholar
  19. Confalonieri, S. 2013. The telling of the unattainable attempt to avoid the casus irreducibilis for cubic equations: Cardano’s De Regula Aliza. With a compared transcription of 1570 and 1663 editions and a partial English translation. PhD thesis, Universit Diderot Paris 7, online at http://tel.archives-ouvertes.fr/tel-00875863 and http://www2.math.uni-wuppertal.de/confalon/. To be published with Springer in 2015.
  20. Cossali, P. 1782. Sul quesito analitico proposto all’Accademia di Padova per il premio dell’anno 1781 di una assoluta dimostrazione della irriducibilit del binomio cubico. per gli eredi di Marco Moroni.Google Scholar
  21. Cossali, P. 1799a. Origine, trasporto in Italia, primi progressi in essa dell’Algebra. Reale Tipografia Parmense, two volumes.Google Scholar
  22. Cossali, P. 1799b. Particularis methodi de cubicarum æquationum solutione a Cardano luci traditæ. Generalis posteriorum analystarum usus ex cap. I De Regula Aliza ipsius Cardani vitio luculentissime evictus. Atque mysterium casus irreducibilis post duo sœcula prorsus retecta causa sublatum specimen analyticum primum. Caroli Palesii.Google Scholar
  23. Cossali, P. 1813. Disquisizione sui varj metodi di eliminazione con il componimento di uno nuovo. Memorie di matematica e di fisica della Società italiana delle scienze XVI, first part:272–330.Google Scholar
  24. Cossali, P. 1966. Storia del caso irriducibile. Istituto veneto di scienze, lettere ed arti, edited by Romano Gatto.Google Scholar
  25. Franci, R. 1985. Contributi alla risoluzione delle equazioni di terzo grado. In Mathemata: Festschrift fr Helmuth Gericke, ed. M. Folkerts, and U. Lindgren, 221–228. Stuttgart: Steiner.Google Scholar
  26. Gavagna, V. 2003. Cardano legge Euclide. I Commentaria in Euclidis Elementa. In Cardano e la tradizione dei saperi. Atti del Convegno internazionale di studi, ed. M. Baldi, and G. Canziani, 125–144. Milano: Franco Angeli.Google Scholar
  27. Gavagna, V. 2010. Medieval heritage and new perspectives in Cardano’s Practica arithmeticæ. Bollettino di storia delle scienze matematiche 1: 61–80.MathSciNetGoogle Scholar
  28. Gavagna, V. 2012. Dalla Practica arithmeticæ all’Ars magna. Lo sviluppo dell’algebra nel pensiero di Cardano. In: Pluralité de l’algèbre à la Renaissance, Champion, ed. by Maria-Rosa Massa-Esteve, Sabine Rommevaux, and Maryvonne Spiesser, 237–268.Google Scholar
  29. Hutton, C. 1812. Tracts on mathematical and philosophical subjects, F. C. and J. Rivington, chap Tract 33. History of algebra, 219–224.Google Scholar
  30. Lagny, T.F.d. 1697. Nouveaux lemens d’arithmtique et d’algbre ou introduction aux mathmatiques. Jean Jombert.Google Scholar
  31. Loria, G. 1950. Storia delle matematiche. Dall’alba della civiltà al secolo XIX, 2nd ed. Milan: Hoepli.zbMATHGoogle Scholar
  32. Maracchia, S. 2005. Storia dell’algebra. Liguori: Liguori.Google Scholar
  33. Panza, M. 2007. What is new and what is old in Viète’s analysis restituta and algebra nova, and where do they come from? Some reflections on the relations between algebra and analysis before Viète. Revue d’histoire des mathématiques 13: 85–153.zbMATHMathSciNetGoogle Scholar
  34. Schemmel, M., and J. Stedall. 2015. Topics in the manuscripts of Thomas Harriot (1560–1621). Online at http://echo.mpiwg-berlin.mpg.de/content/scientific_revolution/harriot/harriot-bl/maps/2.4.14_cardano.pt
  35. Stedall, J. 2011. From Cardano’s great art to Lagrange’s reflections. Filling a gap in the history of algebra. EMS.Google Scholar
  36. Stevin, S. 1585. Larithmtique. Leiden: Christophle Plantin.Google Scholar
  37. Tamborini, M. 2003. Per una storia dell’Opus Arithmeticæ Perfectum. In Cardano e la tradizione dei saperi. Atti del Convegno internazionale di studi, ed. Marialuisa Baldi, and Guido Canziani, 157–190. Milano: Franco Angeli.Google Scholar
  38. Tanner, R.C.H. 1980. The alien realm of the minus. Deviatory mathematics in Cardano’s writings. Annals of Science 37: 159–178.CrossRefzbMATHMathSciNetGoogle Scholar
  39. Tartaglia, N. 1959. Quesiti et inventioni diverse. Ateneo di Brescia, facsimile reproduction of the 1554 second edition by Arnaldo Masotti.Google Scholar
  40. www.cardano.unimi.it (last checked February 14, 2015) Sito Girolamo Cardano. Strumenti per storia del Rinascimento nell’Italia settentrionale. Online at http://www.cardano.unimi.it/

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Bergische UniversitätWuppertalGermany

Personalised recommendations