Advertisement

Archive for History of Exact Sciences

, Volume 66, Issue 5, pp 465–484 | Cite as

The collaboration of Emil Artin and George Whaples: Artin’s mathematical circle extends to America

  • Della Dumbaugh
  • Joachim Schwermer
Article
  • 232 Downloads

Abstract

In his biography of Emil Artin, Richard Brauer describes the years from 1931–1941 as a time when “Artin spoke through his students and through the members of his mathematical circle” rather than through written publications. This paper explores these seemingly quiet years when Artin immigrated to America and disseminated ideas about algebraic number theory during this time in his collaboration with George Whaples, a young American mathematician who had just completed his Ph.D. at the University of Wisconsin. The main result of their work is the use of the product formula for valuations to come up with an axiomatic characterization of both algebraic number fields and algebraic function fields with a finite field of constants. These two families of fields are exactly the fields for which class field theory is known to hold. We situate their mathematical work in the broader context of algebraic number theory and their lives within the broader historical context.

Keywords

Prime Ideal Algebraic Number Simple Algebra Algebraic Function Product Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Archival sources

  1. Artin File, Notre Dame Archives, University of Notre Dame, Notre Dame, Indiana [=NDA]Google Scholar
  2. Artin File, Indiana University Archives, Indiana University, Boomington, Indiana [=IUA]Google Scholar
  3. Artin, Emil, to Helmut Hasse, 27 November, 1930, Cod. Ms H. Hasse, 1:59, nr. 35, [NSUB]Google Scholar
  4. Artin, Emil, to Helmut Hasse, 24 August, 1931, Cod. Ms H. Hasse, 1:59, nr. 39. [NSUB]Google Scholar
  5. Artin, Emil, to Oswald Veblen, IAS, Princeton, 13 February, 1941, [AC, IAS]Google Scholar
  6. Artin, Emil, to Hermann Weyl, 31 January, 1941, [AC, IAS]Google Scholar
  7. Chevalley, Claude, to Helmut Hasse, 20 June, 1935, Cod. Ms. H. Hasse, 1:19. [NSUB]Google Scholar
  8. Ingraham, Mark H., to Oswald Veblen, 11 February, 1941, [AC, IAS]Google Scholar
  9. Kleene, S. C., to Oswald Veblen, 14 February, 1941, [AC, IAS]Google Scholar
  10. Lefschetz, Solomon, to Father John O’Hara, 12 January, 1937, [NDA]Google Scholar
  11. MacDuffee, C. C., to Oswald Veblen, 13 February, 1941, [AC, IAS]Google Scholar
  12. Matchett, Margaret, On the Zeta Function for Ideles, Thesis (Ph.D) -Indiana University, 1946, [IUA]Google Scholar
  13. Niedersächsische Staats-und Universitätsbibliothek Göttingen, Handschriftenabteilung [=NSUB]Google Scholar
  14. O’Hara, John, to H. B. Wells, 11 June, 1938, [NDA]Google Scholar
  15. Secretary of IAS School of Mathematics to Professor Tracy Thomas, 20 June, 1947, [AC, IAS]Google Scholar
  16. The Shelby White and Leon Levy Archives Center, Institute for Advanced Study, Princeton [=AC, IAS]Google Scholar
  17. Weyl, Hermann, to George Whaples, 15 March, 1941, [AC, IAS]Google Scholar
  18. Weyl, Hermann, to Marshall Stone, 12 March, 1942, [AC, IAS]Google Scholar
  19. Weyl, Hermann, to no name given, 21 May, 1942, [AC, IAS]Google Scholar
  20. Whaples, George, Application to IAS, 10 February 1941, [AC, IAS]Google Scholar
  21. Williams, K. P., to Fernandus Payne, 6 April, 1938, [IUA]Google Scholar

Published sources

  1. Archibald Raymond, C. (ed) (1938) Semicentennial Addresses of the American Mathematical Society 1888–1938. American Mathematical Society, New YorkGoogle Scholar
  2. Artin Emil. (1930) Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren. Abhandlungen mathematisches Seminar, Universität Hamburg 8: 292–306zbMATHCrossRefGoogle Scholar
  3. Artin Emil. (1931a) Die gruppentheoretische Struktur der Diskriminanten algebraischer Zahlkörper. Journal für die reine und angewandte Mathematik 164: 1–11Google Scholar
  4. Artin, Emil. 1931b. Einführung in die Theorie der Gammafunktion. (Hamburger mathematische Einzelschriften 11) Leipzig, Berlin: B. G. Teubner. 35 S.Google Scholar
  5. Artin Emil. (1932a) Über Einheiten relativ galoisscher Zahlkörper. Journal für die reine und angewandte Mathematik 167: 153–156Google Scholar
  6. Artin Emil. (1932b) Über die Bewertungen algebraischer Zahlkörper. Journal für die reine und angewandte Mathematik 167: 157–159Google Scholar
  7. Artin, Emil. 1933. Algebraische Zahlentheorie, Lecture Course Hamburg 1933 (Notes taken by E. A. Eichelbrenner, edited by Peter Ullrich, Mitteilungen der Mathematischen Gesellschaft in Hamburg 21/2 (2002), 159–223).Google Scholar
  8. Artin Emil. (1950) The influence of J. H. M. Wedderburn on the Development of Modern Algebra. Bulletin of the American Mathematical Society 56: 65–72MathSciNetzbMATHGoogle Scholar
  9. Artin, Emil. 1951. Algebraic numbers and algebraic functions. Notes by I. Adamson. New York: Institute for Mathematics and Mechanics, New York University.Google Scholar
  10. Artin, Emil. 1959. Theory of algebraic numbers. Notes from Lectures at Göttingen 1956/7. Göttingen: Striker.Google Scholar
  11. Artin, Emil. 1965. Collected papers (Ed. Serge Lang and John Tate). New York: Springer.Google Scholar
  12. Artin Emil. (1967) Algebraic numbers and algebraic functions. Gordan and Breach, New YorkzbMATHGoogle Scholar
  13. Artin, Emil and Tate, John T. 1968. Class field theory. New York: W. A. Benjamin, Inc. Advanced Book Classics. Redwood City, CA: Addison-Wesley Publishing Company, Inc.Google Scholar
  14. Artin Emil, Whaples George. (1943) The theory of simple rings. American Journal of Mathematics 65: 87–107MathSciNetzbMATHCrossRefGoogle Scholar
  15. Artin Emil, Whaples George. (1945) Axiomatic characterization of fields by the product formula for valuations. Bulletin of the American Mathematical Society 51: 469–492MathSciNetzbMATHCrossRefGoogle Scholar
  16. Artin Emil, Whaples George. (1946) A note on axiomatic characterization of fields. Bulletin of the American Mathematical Society 52: 245–247MathSciNetzbMATHCrossRefGoogle Scholar
  17. Ash, Mitchell. 2003. Forced migration and scientific change: Steps towards a new overview. In Intellectual migration and cultural transformation: Refugees from national socialism in the english-speaking world, ed. E. Timms and J. Hughes, 241–263. Vienna: Springer.Google Scholar
  18. Brauer Richard. (1967) Emil Artin. Bulletin of the American Mathematical Society 73: 27–43MathSciNetzbMATHCrossRefGoogle Scholar
  19. Brauer Richard, Helmut Hasse, Emmy Noether. (1932) Beweis eines Hauptsatzes in der Theorie der Algebren. Journal für die reine und angewandte Mathematik 167: 399–404Google Scholar
  20. Chevalley Claude. (1930) Sur la théorie des restes normiques. Comptes Rendus de l’Académie des Sciences Paris 191: 426–428zbMATHGoogle Scholar
  21. Chevalley Claude. (1931) Relation entre le nombre des classes d’un sous-corps et celui d’un sur-corps. Comptes Rendus de l’Académie des Sciences Paris 192: 257–258Google Scholar
  22. Chevalley Claude. (1932) Sur la structure de la théorie du corps de classes. Comptes Rendus de l’Académie des Sciences Paris 194: 766–769Google Scholar
  23. Chevalley Claude. (1933) Sur la théorie du corps de classes dans les corps finis et le corps locaux. Journal of the Faculty of Science, University of Tokyo 2: 365–476zbMATHGoogle Scholar
  24. Chevalley Claude. (1936) Généralisation de la théorie du corps de classes pour les extensions infinies. Journal de Mathématiques Pures et Appliquées. 15: 359–371zbMATHGoogle Scholar
  25. Chevalley Claude. (1940) La théorie du corps de classes. Annals of Mathematics 41: 394–418MathSciNetGoogle Scholar
  26. Chevalley Claude. (1953) Class field theory. Nagoya University, NagoyaGoogle Scholar
  27. Chevalley Claude, Jacques Herbrand. (1931) Nouvelle démonstration du théorème d’existence en théorie du corps de classes. Comptes Rendus de l’Académie des Sciences Paris 193: 814–815Google Scholar
  28. Cohn Harvey. (1978) A Classical invitation to algebraic numbers and class fields. With two appendices by Olga Taussky. Springer, New YorkCrossRefGoogle Scholar
  29. Dickson, Leonard. 1983. The collected mathematical papers of Leonard Eugene Dickson (Ed. A. Adrian Albert. 6 vols). New York: Chelsea Publishing Com.Google Scholar
  30. Fenster, Della D. 2007. Artin in America (1937–1958): A time of transition. In: Emil Artin (1898–1962) Beiträge zu Leben, Werk und Persönlichkeit, ed. K. Reich and A. Kreuzer, Algorismus 61, Augsburg: Dr. Erwin Rauner Verlag.Google Scholar
  31. Frei, Günther and Peter Roquette. 2008. Emil Artin und Helmut Hasse: Die Korrespondenz 1923–1934 (Ed. and commented by G. Frei and P. Roquette, with contributions of F. Lemmermeyer). Göttingen: Universitätsverlag.Google Scholar
  32. Fujisaki Genjiro. (1958) On the zeta-function of the simple algebra over the field of rational numbers. Journal of the Faculty of Science, University of Tokyo Section 1A, Mathematics 7: 567–604MathSciNetzbMATHGoogle Scholar
  33. Galison Peter. (2008) Ten problems in history and philosophy of science. Isis 99: 111–124MathSciNetCrossRefGoogle Scholar
  34. Hasse Helmut. (1923a) Über die Äquivalenz quadratischer Formen im Körper der rationalen Zahlen. Journal für die Reine und Angewandte Mathematik 152: 205–244zbMATHGoogle Scholar
  35. Hasse Helmut. (1923b) Über die Darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen. Journal für die Reine und Angewandte Mathematik 152: 129–148zbMATHGoogle Scholar
  36. Hasse Helmut. (1924a) Äquivalenz quadratischer Formen in einem beliebigen algebraischen Zahlkörper. Journal für die Reine und Angewandte Mathematik 153: 184–191zbMATHGoogle Scholar
  37. Hasse Helmut. (1924b) Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper. Journal für die Reine und Angewandte Mathematik 153: 113–130Google Scholar
  38. Hasse Helmut. (1924c) Symmetrische Matrizen im Körper der rationalen Zahlen. Journal für die Reine und Angewandte Mathematik 153: 12–43Google Scholar
  39. Hasse Helmut. (1950) Kurt Hensel zum Gedächtnis. Journal für die Reine und Angewandte Mathematik 187: 1–13Google Scholar
  40. Hasse, Helmut. 1975. Mathematische Abhandlungen (Ed. Heinrich Wolfgang Leopoldt and Peter Roquette, 3 vols). Berlin: Walter de Gruyter.Google Scholar
  41. Hecke Erich. (1918) Über eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Erste Mitteilung. Mathematische Zeitschrift 1: 357–376MathSciNetGoogle Scholar
  42. Hecke Erich. (1920) Über eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Zweite Mitteilung. Math. Zeitschrift 4((1920): 11–21MathSciNetGoogle Scholar
  43. Hensel, Kurt. 1913. Zahlentheorie. Berlin and Leipzig: G. J. Göschen’sche Verlagshandlung.Google Scholar
  44. Hey, Käte. 1927. Analytische Zahlentheorie in Systemen hyperkomplexer Zahlen. Thesis Hamburg 1927.Google Scholar
  45. Iyanaga Shokichi. (2006) Travaux de Claude Chevalley sur la théorie du corps de classes: Introduction. Japanese Journal of Mathematics 1: 25–85MathSciNetzbMATHCrossRefGoogle Scholar
  46. Ostrowski Alexander. (1935) Untersuchungen zur arithmetischen Theorie der Körper (Die Theorie der Teilbarkeit in allgemeinen Körpern). Mathematische Zeitschrift 39: 269–320MathSciNetCrossRefGoogle Scholar
  47. Reingold, Nathan. 1985. Refugee mathematicians in the United States of America, 1933–1941: Reception and reaction. Annals of Science 38: 313–338.Google Scholar
  48. Rider, Robin. 1984. Alarm and opportunity: Emigration of mathematicians and physicists to Britain and the United States, 1933–1945. Historical Studies in the Physical Sciences 15: 107–176.Google Scholar
  49. Rota Gian-Carlo, Fabrizio Palombi. (2008) Indiscrete Thoughts. Birckhäuser, BostonzbMATHCrossRefGoogle Scholar
  50. Schwermer, Joachim. 2009. Minkowski, Hensel and Hasse—On the beginnings of the local–global principle. In Episodes in the history of modern algebra (1850–1950), ed. Jeremy J. Gray and Karen Hunger Parshall. Rhode Island: American Mathematical Society.Google Scholar
  51. Siegmund-Schultze, Reinhard. 2009. Mathematicians fleeing from Nazi Germany: Individual fates and global impact. Princeton, NJ: Princeton University Press.Google Scholar
  52. Tate, John. 1950. Fourier analysis in number fields and Hecke’s zeta functions, thesis, Princeton 1950, In: Algebraic number theory, ed. J. W. S. Cassels and A. Fröhlich, pp. 305–347. London: Academic Press.Google Scholar
  53. Wedderburn JosephH.M. (1907) On hypercomplex number systems. Proceedings of the London Mathematical Society 6: 77–118CrossRefGoogle Scholar
  54. Weil Andre. (1951) Sur la théorie du corps de classes. Journal of the Mathematical Society of Japan 3: 1–35MathSciNetzbMATHGoogle Scholar
  55. Weil Andre. (1967a) Review: The collected papers of Emil Artin. Scripta Mathematica 28: 237–238Google Scholar
  56. Weil, Andre. 1967b. Algebraic number theory. Grundlehren Math. Wissenschaften, Bd. 144, Berlin: Springer.Google Scholar
  57. Whaples George. (1942) Non-analytic class field theory and Grunwald’s theorem. Duke Mathematical Journal 9: 455–473MathSciNetzbMATHCrossRefGoogle Scholar
  58. Whaples George. (1965) Review of introduction to quadratic forms by O. T. O’Meara. American Mathematical Monthly 72: 211–212MathSciNetCrossRefGoogle Scholar
  59. Zassenhaus Hans. (1964) Emil Artin, his life and his work. Notre Dame Journal of Formal Logic V: 1–9MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RichmondRichmondUSA
  2. 2.Faculty of MathematicsUniversity of ViennaViennaAustria
  3. 3.Erwin Schrödinger InternationalInstitute for Mathematical PhysicsViennaAustria

Personalised recommendations