Archive for History of Exact Sciences

, Volume 66, Issue 3, pp 295–358 | Cite as

The early proofs of the theorem of Campbell, Baker, Hausdorff, and Dynkin

  • Rüdiger Achilles
  • Andrea Bonfiglioli


The aim of this paper is to provide a comprehensive exposition of the early contributions to the so-called Campbell, Baker, Hausdorff, Dynkin Theorem during the years 1890–1950. Related works by Schur, Poincaré, Pascal, Campbell, Baker, Hausdorff, and Dynkin will be investigated and compared. For a full recovery of the original sources, many mathematical details will also be furnished. In particular, we rediscover and comment on a series of five notable papers by Pascal (Lomb Ist Rend, 1901–1902), which nowadays are almost forgotten.


Transformation Group Fundamental Theorem Formal Power Series Bernoulli Number Noncommutative Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbaspour H., Moskowitz M. (2007) Basic Lie theory. World Scientific, Hackensack, NJzbMATHGoogle Scholar
  2. Alexandrov, P.S., et al. 1979. Die Hilbertschen Probleme. Ostwalds Klassiker der exakten Wissenschaften. Leipzig: Akademische Verlagsgesellschaft Geest & Portig K.-G.Google Scholar
  3. Baker H.F. (1901) On the exponential theorem for a simply transitive continuous group, and the calculation of the finite equations from the constants of structure. Proceedings of the London Mathematical Society 34: 91–127zbMATHGoogle Scholar
  4. Baker H.F. (1902) Further applications of matrix notation to integration problems. Proceedings of the London Mathematical Society 34: 347–360Google Scholar
  5. Baker H.F. (1903) On the calculation of the finite equations of a continuous group. Proceedings of the London Mathematical Society 35: 332–333zbMATHGoogle Scholar
  6. Baker H.F. (1905) Alternants and continuous groups. Proceedings of the London Mathematical Society (2) 3: 24–47zbMATHGoogle Scholar
  7. Białynicki-Birula I., Mielnik B., Plebański J. (1969) Explicit solution of the continuous Baker–Campbell–Hausdorff problem and a new expression for the phase operator. Annals of Physics 51: 187–200Google Scholar
  8. Biermann K.-R. (1988) Die Mathematik und ihre Dozenten an der Berliner Universität 1810–1933. Stationen auf dem Wege eines mathematischen Zentrums von Weltgeltung, 2nd improved edn. Akademie-Verlag, BerlinGoogle Scholar
  9. Birkhoff G. (1936) Continuous groups and linear spaces. Recueil Mathématique [Matematicheskii Sbornik] N.S. 1(43) 5: 635–642MathSciNetGoogle Scholar
  10. Birkhoff G. (1938) Analytic groups. Transactions of the American Mathematical Society 43: 61–101MathSciNetGoogle Scholar
  11. Blanes S., Casas F. (2004) On the convergence and optimization of the Baker-Campbell-Hausdorff formula. Linear Algebra and its Applications 378: 135–158MathSciNetzbMATHGoogle Scholar
  12. Blanes S., Casas F., Oteo J.A., Ros J. (1998) Magnus and Fer expansions for matrix differential equations: The convergence problem. Journal of Physics A: Mathematical and General 31: 259–268MathSciNetzbMATHGoogle Scholar
  13. Blanes S., Casas F., Oteo J.A., Ros J. (2009) The Magnus expansion and some of its applications. Physics Reports 470: 151–238MathSciNetGoogle Scholar
  14. Bonfiglioli, A., and R. Fulci. 2012. Topics in noncommutative algebra. The theorem of Campbell, Baker, Hausdorff and Dynkin. Lecture Notes in Mathematics 2034. Berlin: Springer-Verlag.Google Scholar
  15. Borel, A. 2001. Essays in the history of Lie groups and algebraic groups. History of Mathematics 21. Providence/Cambridge: American Mathematical Society/London Mathematical Society.Google Scholar
  16. Bose A. (1989) Dynkin’s method of computing the terms of the Baker–Campbell–Hausdorff series. Journal of Mathematical Physics 30: 2035–2037MathSciNetzbMATHGoogle Scholar
  17. Boseck, H., Czichowski, G., and K.-P. Rudolph. (1981) Analysis on topological groups—general Lie theory. Teubner-Texte zur Mathematik 37. Leipzig: BSB B. G. Teubner Verlagsgesellschaft.Google Scholar
  18. Bourbaki, N. 1972. Éléments de Mathématique. Fasc. XXXVII: Groupes et algèbres de Lie. Chap. II: Algèbres de Lie libres. Chap. III: Groupes de Lie. Actualités scientifiques et industrielles, 1349. Paris: Hermann.Google Scholar
  19. Campbell J.E. (1897a) On a law of combination of operators bearing on the theory of continuous transformation groups. Proceedings of the London Mathematical Society 28: 381–390zbMATHGoogle Scholar
  20. Campbell J.E. (1897b) Note on the theory of continuous groups. Bulletin of the American Mathematical Society 4: 407–408Google Scholar
  21. Campbell J.E. (1898) On a law of combination of operators (second paper). Proceedings of the London Mathematical Society 29: 14–32zbMATHGoogle Scholar
  22. Campbell J.E. (1903) Introductory treatise on Lie’s theory of finite continuous transformation groups. Clarendon Press, OxfordGoogle Scholar
  23. Cartier P. (1956) Demonstration algébrique de la formule de Hausdorff. Bulletin de la Société Mathématique de France 84: 241–249MathSciNetzbMATHGoogle Scholar
  24. Casas F. (2007) Sufficient conditions for the convergence of the Magnus expansion. Journal of Physics A: Mathematical and Theoretical 40: 15001–15017MathSciNetzbMATHGoogle Scholar
  25. Casas F., Murua A. (2009) An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications. Journal of Mathematical Physics 50: 033513–103351323MathSciNetGoogle Scholar
  26. Cohen A. (1931) An introduction to the Lie theory of one-parameter groups. G.E. Stechert & Co., New YorkGoogle Scholar
  27. Czyż J. (1989) On Lie supergroups and superbundles defined via the Baker–Campbell–Hausdorff formula. Journal of Geometry and Physics 6: 595–626MathSciNetzbMATHGoogle Scholar
  28. Czyż J. (1994) Paradoxes of measures and dimensions originating in Felix Hausdorff’s ideas. World Scientific Publishing Co. Inc., SingaporezbMATHGoogle Scholar
  29. Day J., So W., Thompson R.C. (1991) Some properties of the Campbell–Baker–Hausdorff series. Linear and Multilinear Algebra 29: 207–224MathSciNetzbMATHGoogle Scholar
  30. Dieudonné, J.A. 1974. Treatise on analysis, Vol. IV. Pure and Applied Mathematics 10-IV. New York: Academic Press.Google Scholar
  31. Dieudonné, J.A. 1982. A panorama of pure mathematics. As seen by N. Bourbaki. Pure and Applied Mathematics 97. New York: Academic Press.Google Scholar
  32. Djoković D.Ž. (1975) An elementary proof of the Baker–Campbell–Hausdorff–Dynkin formula. Mathematische Zeitschrift 143: 209–211MathSciNetzbMATHGoogle Scholar
  33. Dragt A.J., Finn J.M. (1976) Lie series and invariant functions for analytic symplectic maps. Journal of Mathematical Physics 17: 2215–2217MathSciNetzbMATHGoogle Scholar
  34. Duistermaat J.J., Kolk J.A.C. (2000) Lie groups. Springer, Universitext. BerlinzbMATHGoogle Scholar
  35. Dynkin E.B. (1947) Calculation of the coefficients in the Campbell–Hausdorff formula (Russian). Doklady Akademii Nauk SSSR (N. S.) 57: 323–326MathSciNetzbMATHGoogle Scholar
  36. Dynkin E.B. (1949) On the representation by means of commutators of the series log (e x e y) for noncommutative x and y (Russian). Matematicheskii Sbornik (N.S.) 25(67(1)): 155–162MathSciNetGoogle Scholar
  37. Dynkin E.B. (1950) Normed Lie algebras and analytic groups. Uspekhi Matematicheskikh Nauk 5:1(35): 135–186.Google Scholar
  38. Dynkin, E.B. 2000. Selected papers of E. B. Dynkin with commentary. Eds. A.A. Yushkevich, G.M. Seitz, and A.L. Onishchik. Providence: American Mathematical Society.Google Scholar
  39. Eichler M. (1968) A new proof of the Baker–Campbell–Hausdorff formula. Journal of the Mathematical Society of Japan 20: 23–25MathSciNetzbMATHGoogle Scholar
  40. Eisenhart, L.P. 1933. Continuous groups of transformations. Princeton: University Press. (Reprinted 1961, New York: Dover Publications.)Google Scholar
  41. Eriksen E. (1968) Properties of higher-order commutator products and the Baker–Hausdorff formula. Journal of Mathematical Physics 9: 790–796MathSciNetzbMATHGoogle Scholar
  42. Folland G.B. (1975) Subelliptic estimates and function spaces on nilpotent Lie groups. Arkiv for Matematik 13: 161–207MathSciNetzbMATHGoogle Scholar
  43. Folland, G.B., and E.M. Stein. 1982. Hardy spaces on homogeneous groups. Mathematical Notes 28. Princeton/Tokyo: Princeton University Press/University of Tokyo Press.Google Scholar
  44. Friedrichs K.O. (1953) Mathematical aspects of the quantum theory of fields. V. Fields modified by linear homogeneous forces. Communications on Pure and Applied Mathematics 6: 1–72MathSciNetzbMATHGoogle Scholar
  45. Gilmore R. (1974) Baker–Campbell–Hausdorff formulas. Journal of Mathematical Physics 15: 2090–2092MathSciNetzbMATHGoogle Scholar
  46. Glöckner H. (2002a) Algebras whose groups of units are Lie groups. Studia Mathematica 153: 147–177MathSciNetzbMATHGoogle Scholar
  47. Glöckner, H. 2002b. Infinite-dimensional Lie groups without completeness restrictions. In Geometry and analysis on finite and infinite-dimensional Lie Groups, vol. 55, ed. A. Strasburger, W. Wojtynski, J. Hilgert, and K.-H. Neeb, 43–59. Warsaw: Banach Center Publications.Google Scholar
  48. Glöckner H. (2002c) Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups. Journal of Functional Analysis 194: 347–409MathSciNetzbMATHGoogle Scholar
  49. Glöckner H., Neeb K.-H. (2003) Banach–Lie quotients, enlargibility, and universal complexifications. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 560: 1–28zbMATHGoogle Scholar
  50. Godement, R. 1982. Introduction à la théorie des groupes de Lie. Tome 2. Publications Mathématiques de l’Université Paris VII. Paris: Université de Paris VII, U.E.R. de Mathématiques.Google Scholar
  51. Gorbatsevich, V.V., A.L. Onishchik, and E.B. Vinberg. 1997. Foundations of Lie theory and Lie transformation groups. New York: Springer.Google Scholar
  52. Gordina M. (2005) Hilbert–Schmidt groups as infinite-dimensional Lie groups and their Riemannian geometry. Journal of Functional Analysis 227: 245–272MathSciNetzbMATHGoogle Scholar
  53. Hairer E., Lubich Ch., Wanner G. (2006) Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. Springer, New YorkzbMATHGoogle Scholar
  54. Hall, B.C. 2003. Lie groups, Lie algebras, and representations: an elementary introduction. Graduate texts in mathematics. New York: Springer.Google Scholar
  55. Hausdorff F. (1906) Die symbolische Exponentialformel in der Gruppentheorie. Berichte der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig (Leipziger Berichte), Math. Phys. Cl. 58: 19–48Google Scholar
  56. Hausdorff, F. 2001. Gesammelte Werke. Band IV: Analysis, Algebra und Zahlentheorie. Herausgegeben von S.D. Chatterji, R. Remmert und W. Scharlau. (Collected works. Vol. IV: Analysis, algebra, number theory.). Eds. S.D. Chatterji, R. Remmert, and W. Scharlau. Berlin: Springer.Google Scholar
  57. Hausner, M., and J.T. Schwartz. 1968. Lie Groups. Lie algebras. Notes on mathematics and its applications. New York: Gordon and Breach.Google Scholar
  58. Hawkins, Th. 1989. Line geometry, differential equations and the birth of Lie’s theory of groups. In The history of modern mathematics, vol. I, pp. 275–327. Boston: Academic Press.Google Scholar
  59. Hawkins Th. (1991) Jacobi and the birth of Lie’s theory of groups. Archive for History of Exact Sciences 42: 187–278MathSciNetzbMATHGoogle Scholar
  60. Hawkins, Th. 2000. Emergence of the Theory of Lie groups. An essay in the history of mathematics 1869–1926. Sources and studies in the history of mathematics and physical sciences. New York: Springer.Google Scholar
  61. Hilgert J., Hofmann K.H. (1986) On Sophus Lie’s fundamental theorem. Journal of Functional Analysis 67: 239–319MathSciNetGoogle Scholar
  62. Hilgert J., Neeb K.-H. (1991) Lie-Gruppen und Lie-Algebren. Vieweg, BraunschweigzbMATHGoogle Scholar
  63. Hochschild G.P. (1965) The structure of Lie groups. San Holden-Day Inc., FranciscozbMATHGoogle Scholar
  64. Hofmann, K.H. 1972. Die Formel von Campbell, Hausdorff und Dynkin und die Definition Liescher Gruppen. In Theory of sets and topology, ed. W. Rinow, 251–264. Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
  65. Hofmann, K.H. 1975. Théorie directe des groupes de Lie. I, II, III, IV. Séminaire Dubreil, Algèbre, tome 27, n. 1 (1973/1974), Exp. 1 (1–24), Exp. 2 (1–16), Exp. 3 (1–39), Exp. 4 (1–15).Google Scholar
  66. Hofmann K.H., Morris S.A. (2005) Sophus Lie’s third fundamental theorem and the adjoint functor theorem. Journal of Group Theory 8: 115–133MathSciNetzbMATHGoogle Scholar
  67. Hofmann, K.H., and S.A. Morris. 2006. The structure of compact groups. A primer for the student—A handbook for the expert, 2nd revised edn., de Gruyter Studies in Mathematics 25. Berlin: Walter de Gruyter.Google Scholar
  68. Hofmann, K.H., and S.A. Morris. 2007. The Lie theory of connected pro-Lie goups. A structure theory for pro-Lie algebras, pro-Lie groups, and connected locally compact groups. EMS tracts in mathematics 2. Zürich: European Mathematical Society.Google Scholar
  69. Hofmann K.H., Neeb K.-H. (2009) Pro-Lie groups which are infinite-dimensional Lie groups. Mathematical Proceedings of the Cambridge Philosophical Society 146: 351–378MathSciNetzbMATHGoogle Scholar
  70. Hörmander L. (1967) Hypoelliptic second order differential equations. Acta Mathematica 119: 147–171MathSciNetzbMATHGoogle Scholar
  71. Ince, E.L. 1927. Ordinary differential equations. London: Longmans, Green & Co. (Reprinted 1956, New York: Dover Publications Inc.)Google Scholar
  72. Iserles A., Munthe-Kaas H.Z., Nørsett S.P., Zanna A. (2000) Lie-group methods. Acta Numerica 9: 215–365Google Scholar
  73. Iserles A., Nørsett S.P. (1999) On the solution of linear differential equations in Lie groups. Philosophical Transactions of the Royal Society A 357: 983–1019zbMATHGoogle Scholar
  74. Jacobson, N. 1962. Lie algebras. Interscience tracts in pure and applied mathematics 10. New York: Interscience Publishers/Wiley.Google Scholar
  75. Klarsfeld S., Oteo J.A. (1989a) Recursive generation of higher-order terms in the Magnus expansion. Physical Review A 39: 3270–3273Google Scholar
  76. Klarsfeld S., Oteo J.A. (1989b) The Baker–Campbell–Hausdorff formula and the convergence of Magnus expansion. Journal of Physics A: Mathematical and General 22: 4565–4572MathSciNetzbMATHGoogle Scholar
  77. Kobayashi H., Hatano N., Suzuki M. (1998) Goldberg’s theorem and the Baker–Campbell–Hausdorff formula. Physica A 250: 535–548MathSciNetzbMATHGoogle Scholar
  78. Kolsrud M. (1993) Maximal reductions in the Baker–Hausdorff formula. Journal of Mathematical Physics 34: 270–286MathSciNetzbMATHGoogle Scholar
  79. Kumar K. (1965) On expanding the exponential. Journal of Mathematical Physics 6: 1928–1934MathSciNetzbMATHGoogle Scholar
  80. Magnus W. (1950) A connection between the Baker-Hausdorff formula and a problem of Burnside. Annals of Mathematics 52: 111–126MathSciNetzbMATHGoogle Scholar
  81. Magnus W., Karrass A., Solitar D. (1966) Combinatorial group theory. Interscience, New YorkzbMATHGoogle Scholar
  82. McLachlan R.I., Quispel R. (2002) Splitting methods. Acta Numerica 11: 341–434MathSciNetzbMATHGoogle Scholar
  83. Michel J. (1976) Calculs dans les algèbres de Lie libre: la série de Hausdorff et le problème de Burnside. Astérisque 38: 139–148Google Scholar
  84. Mielnik B., Plebański J. (1970) Combinatorial approach to Baker–Campbell–Hausdorff exponents. Annales de l’Institut Henri Poincaré 12: 215–254zbMATHGoogle Scholar
  85. Moan, P.C. 1998. Efficient approximation of Sturm-Liouville problems using Lie-group methods. Technical Report 1998/NA11, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England.Google Scholar
  86. Moan P.C., Niesen J. (2008) Convergence of the Magnus series. Foundations of Computational Mathematics 8: 291–301MathSciNetzbMATHGoogle Scholar
  87. Moan P.C., Oteo J.A. (2001) Convergence of the exponential Lie series. Journal of Mathematical Physics 42: 501–508MathSciNetzbMATHGoogle Scholar
  88. Montgomery D., Zippin L. (1955) Topological transformation groups. Interscience Publishers, New YorkzbMATHGoogle Scholar
  89. Murray F.J. (1962) Perturbation theory and Lie algebras. Journal of Mathematical Physics 3: 451–468MathSciNetzbMATHGoogle Scholar
  90. Nagel A., Stein E.M., Wainger S. (1985) Balls and metrics defined by vector fields I, basic properties. Acta Mathematica 155: 103–147MathSciNetzbMATHGoogle Scholar
  91. Neeb K.-H. (2006) Towards a Lie theory of locally convex groups. Japanese Journal of Mathematics (3) 1: 291–468MathSciNetzbMATHGoogle Scholar
  92. Newman M., So W., Thompson R.C. (1989) Convergence domains for the Campbell–Baker–Hausdorff formula. Linear Multilinear Algebra 24: 301–310MathSciNetzbMATHGoogle Scholar
  93. Omori, H. 1997. Infinite-dimensional Lie groups. Translations of Mathematical Monographs 158. Providence: American Mathematical Society.Google Scholar
  94. Oteo J.A. (1991) The Baker-Campbell-Hausdorff formula and nested commutator identities. Journal of Mathematical Physics 32: 419–424MathSciNetzbMATHGoogle Scholar
  95. Pascal E. (1901a) Sopra alcune indentità fra i simboli operativi rappresentanti trasformazioni infinitesime. Rendiconti/Istituto Lombardo di Scienze e Lettere, Milano (2) 34: 1062–1079Google Scholar
  96. Pascal E. (1901b) Sulla formola del prodotto di due trasformazioni finite e sulla dimostrazione del cosidetto secondo teorema fondamentale di Lie nella teoria dei gruppi. Rendiconti/Istituto Lombardo di Scienze e Lettere, Milano (2) 34: 1118–1130Google Scholar
  97. Pascal E. (1902a) Sopra i numeri bernoulliani. Rendiconti/Istituto Lombardo di Scienze e Lettere, Milano (2) 35: 377–389Google Scholar
  98. Pascal E. (1902b) Del terzo teorema di Lie sull’esistenza dei gruppi di data struttura. Rendiconti/Istituto Lombardo di Scienze e Lettere, Milano (2) 35: 419–431Google Scholar
  99. Pascal E. (1902c) Altre ricerche sulla formola del prodotto di due trasformazioni finite e sul gruppo parametrico di un dato. Rendiconti / Istituto Lombardo di Scienze e Lettere, Milano (2) 35: 555–567Google Scholar
  100. Pascal, E. 1903. I Gruppi Continui di Trasformazioni (Parte generale della teoria). Manuali Hoepli, Nr. 327 bis 328; Milano: Hoepli.Google Scholar
  101. Poincaré H. (1899) Sur les groupes continus. Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 128: 1065–1069zbMATHGoogle Scholar
  102. Poincaré H. (1900) Sur les groupes continus. Transactions of the Cambridge Philosophical Society 18: 220–255Google Scholar
  103. Poincaré H. (1901) Quelques remarques sur les groupes continus. Rendiconti del Circolo Matematico di Palermo 15: 321–368zbMATHGoogle Scholar
  104. Reinsch M.W. (2000) A simple expression for the terms in the Baker–Campbell–Hausdorff series. Journal of Mathematical Physics 41: 2434–2442MathSciNetzbMATHGoogle Scholar
  105. Reutenauer, C. 1993. Free Lie algebras. London Mathematical Society Monographs (New Series) 7. Oxford: Clarendon Press.Google Scholar
  106. Richtmyer R.D., Greenspan S. (1965) Expansion of the Campbell–Baker–Hausdorff formula by computer. Communications on Pure and Applied Mathematics 18: 107–108MathSciNetzbMATHGoogle Scholar
  107. Robart Th. (1997) Sur l’intégrabilité des sous-algèbres de Lie en dimension infinie. Canadian Journal of Mathematics 49: 820–839MathSciNetzbMATHGoogle Scholar
  108. Robart Th. (2004) On Milnor’s regularity and the path-functor for the class of infinite dimensional Lie algebras of CBH type. Algebras, Groups and Geometries 21: 367–386MathSciNetzbMATHGoogle Scholar
  109. Rossmann, W. 2002. Lie Groups. An Introduction Through Linear Groups. Oxford graduate texts in mathematics 5. Oxford: Oxford University Press.Google Scholar
  110. Rothschild L.P., Stein E.M. (1976) Hypoelliptic differential operators and nilpotent groups. Acta Mathematica 137: 247–320MathSciNetGoogle Scholar
  111. Sagle, A.A., R.E. Walde. 1973. Introduction to Lie groups and Lie algebras. Pure and applied mathematics 51. New York: Academic Press.Google Scholar
  112. Schmid W. (1982) Poincaré and Lie groups. Bulletin of the American Mathematical Society (New Series) 6: 175–186zbMATHGoogle Scholar
  113. Schmid, R. 2010. Infinite-dimensional Lie groups and algebras in Mathematical Physics. Advances in Mathematical Physics: Article ID 280362. doi: 10.1155/2010/280362.
  114. Schur F. (1890a) Neue Begründung der Theorie der endlichen Transformationsgruppen. Mathematische Annalen 35: 161–197MathSciNetzbMATHGoogle Scholar
  115. Schur F. (1890b) Beweis für die Darstellbarkeit der infinitesimalen Transformationen aller transitiven endlichen Gruppen durch Quotienten beständig convergenter Potenzreihen. Berichte der Königlich-Sächsischen Gesellschaft der Wissenschaften zu Leipzig (Leipziger Berichte), Math. phys. Cl. 42: 1–7Google Scholar
  116. Schur F. (1891) Zur Theorie der endlichen Transformationsgruppen. Mathematische Annalen 38: 263–286MathSciNetzbMATHGoogle Scholar
  117. Schur F. (1893) Ueber den analytischen Charakter der eine endliche continuirliche Transformationsgruppe darstellenden Functionen. Mathematische Annalen 41: 509–538MathSciNetzbMATHGoogle Scholar
  118. Sepanski, M.R. 2007. Compact Lie groups. Graduate texts in mathematics 235. New York: Springer.Google Scholar
  119. Serre, J.P. 1965. Lie algebras and Lie groups: 1964 lectures given at Harvard University, 1st edn. 1965, New York: W. A. Benjamin, Inc., 2nd ed. 1992. Lecture notes in mathematics 1500. Berlin: Springer.Google Scholar
  120. Specht W. (1948) Die linearen Beziehungen zwischen höheren Kommutatoren. Mathematische Zeitschrift 51: 367–376MathSciNetzbMATHGoogle Scholar
  121. Suzuki M. (1977) On the convergence of exponential operators–the Zassenhaus formula, BCH formula and systematic approximants. Communications in Mathematical Physics 57: 193–200MathSciNetzbMATHGoogle Scholar
  122. Thompson R.C. (1982) Cyclic relations and the Goldberg coefficients in the Campbell–Baker–Hausdorff formula. Proceedings of the American Mathematical Society 86: 12–14MathSciNetzbMATHGoogle Scholar
  123. Thompson R.C. (1989) Convergence proof for Goldberg’s exponential series. Linear Algebra and its Applications 121: 3–7MathSciNetzbMATHGoogle Scholar
  124. Ton-That T., Tran T.D. (1999) Poincaré’s proof of the so-called Birkhoff–Witt theorem. Revue d’Histoire des Mathématiques 5: 249–284MathSciNetzbMATHGoogle Scholar
  125. Tu L.W. (2004) Une courte démonstration de la formule de Campbell–Hausdorff. Journal of Lie Theory 14: 501–508MathSciNetzbMATHGoogle Scholar
  126. Van Est W.T., Korthagen J. (1964) Non-enlargible Lie algebras. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series A 67 =  Indagationes Mathematicae 26: 15–31MathSciNetGoogle Scholar
  127. Varadarajan, V.S. 1984. Lie groups, Lie algebras, and their representations. (Reprint of the 1974 edition.) Graduate texts in mathematics 102. New York: Springer.Google Scholar
  128. Vasilescu F.-H. (1972) Normed Lie algebras. Canadian Journal of Mathematics 24: 580–591MathSciNetzbMATHGoogle Scholar
  129. Veldkamp F.D. (1980) A note on the Campbell–Hausdorff formula. Journal of Algebra 62: 477–478MathSciNetzbMATHGoogle Scholar
  130. Wei J. (1963) Note on the global validity of the Baker–Hausdorff and Magnus theorems. Journal of Mathematical Physics 4: 1337–1341MathSciNetzbMATHGoogle Scholar
  131. Weiss G.H., Maradudin T.D. (1962) The Baker Hausdorff formula and a problem in Crystal Physics. Journal of Mathematical Physics 3: 771–777MathSciNetzbMATHGoogle Scholar
  132. Wever F. (1949) Operatoren in Lieschen Ringen. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 187: 44–55MathSciNetzbMATHGoogle Scholar
  133. Wichmann E.H. (1961) Note on the algebraic aspect of the integration of a system of ordinary linear differential equations. Journal of Mathematical Physics 2: 876–880MathSciNetzbMATHGoogle Scholar
  134. Wilcox R.M. (1967) Exponential operators and parameter differentiation in quantum physics. Journal of Mathematical Physics 8: 962–982MathSciNetzbMATHGoogle Scholar
  135. Wojtyński W. (1998) Quasinilpotent Banach-Lie algebras are Baker–Campbell–Hausdorff. Journal of Functional Analysis 153: 405–413MathSciNetzbMATHGoogle Scholar
  136. Yosida K. (1937) On the exponential-formula in the metrical complete ring. Proceedings of the Imperial Academy Tokyo 13: 301–304. doi: 10.3792/pia/1195579861 MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations