Archive for History of Exact Sciences

, Volume 66, Issue 1, pp 71–93 | Cite as

On the history of the isomorphism problem of dynamical systems with special regard to von Neumann’s contribution

Article
  • 159 Downloads

Abstract

This article reviews some major episodes in the history of the spatial isomorphism problem of dynamical systems theory (ergodic theory). In particular, by analysing, both systematically and in historical context, a hitherto unpublished letter written in 1941 by John von Neumann to Stanislaw Ulam, this article clarifies von Neumann’s contribution to discovering the relationship between spatial isomorphism and spectral isomorphism. The main message of the article is that von Neumann’s argument described in his letter to Ulam is the very first proof that spatial isomorphism and spectral isomorphism are not equivalent because spectral isomorphism is weaker than spatial isomorphism: von Neumann shows that spectrally isomorphic ergodic dynamical systems with mixed spectra need not be spatially isomorphic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov L. (1962) Metric automorphism with quasi-discrete spectrum. Izvestiya Rossiiskoi Akademii Nauk SSSR Seriya Matematicheskaya 26: 513–530MathSciNetMATHGoogle Scholar
  2. Abramov L. (1964) Metric automorphisms with a quasi-discrete spectrum. American Mathematical Society Translations (2(39): 37–56Google Scholar
  3. Alicki R., Fannes M. (2001) Quantum Dynamical Systems. Oxford University Press, OxfordMATHCrossRefGoogle Scholar
  4. Anzai H. (1951) Ergodic skew product transformations on the torus. Osaka Mathematical Journal 3: 83–99MathSciNetMATHGoogle Scholar
  5. Arnold V., Avez A. (1968) Ergodic Problems of Classical Mechanics. W. A. Benjamin, New YorkGoogle Scholar
  6. Choksi J. (1965) Nonergodic transformations with discrete spectrum. Illinois Journal of Mathematics 9: 307–320MathSciNetMATHGoogle Scholar
  7. Cornfeld I., Fomin S., Sinai Y. (1982) Ergodic Theory. Springer, BerlinMATHGoogle Scholar
  8. Frigg, R.and Werndl C. 2011. Entropy—a guide for the perplexed, in C. Beisbart and S. Hartmann, eds, Probabilities in Physics, Oxford: Oxford University Press (forthcoming).Google Scholar
  9. Halmos P. (1944) In general a measure-preserving transformation is mixing. The Annals of Mathematics 45: 786–792MathSciNetMATHCrossRefGoogle Scholar
  10. Halmos P. (1949) Measurable transformations. Bulletin of the American Mathematical Society 55: 1015–1043MathSciNetMATHCrossRefGoogle Scholar
  11. Halmos P. (1951) Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea Publishing Company, New YorkMATHGoogle Scholar
  12. Halmos P. (1956) Lectures on Ergodic Theory. Chelsea Publishing Company, New YorkMATHGoogle Scholar
  13. Halmos P. (1957) Von Neumann on measure and ergodic theory. Bulletin of the American Mathematical Society Translations 64: 86–94CrossRefGoogle Scholar
  14. Halmos P. (1961) Recent progress in ergodic theory. Bulletin of the American Mathematical Society 67: 70–80MathSciNetMATHCrossRefGoogle Scholar
  15. Kolmogorov A. (1958) A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces. Doklady Akademii Nauk SSSR 119: 861–864MathSciNetMATHGoogle Scholar
  16. Kolmogorov, A. 1986. A new metric invariant for transitive dynamical systems and automorphisms of Lebesgue spaces. In Proceedings of the Steklov Institute of Mathematics 169: 97–102.Google Scholar
  17. Koopman, B. (1931) Hamiltonian systems and transformations in Hilbert space. In: Proceedings of the National Academy of Sciences of the United States of America 17: 315–318.Google Scholar
  18. Koopman, B., and von Neumann, J. 1932. Dynamical systems of continuous spectra. In: Proceedings of the National Academy of Sciences of the United States of America 18: 255–263. Reprinted in (Taub, A., ed. 1961a. John von Neumann: Collected Works, Vol. II. Operators, Ergodic Theory and Almost Periodic Functions in a Group. New York and Oxford: Pergamon Press) No. 14.Google Scholar
  19. Lo Bello A. (1983) On the origin and history of ergodic theory. Bollettino di Storia delle Scienze Matematiche 3: 73–75MathSciNetGoogle Scholar
  20. Mackey G. (1974) Ergodic theory and its significance for statistical mechanics and probability theory. Advances in Mathematics 12: 178–268MathSciNetMATHCrossRefGoogle Scholar
  21. Mackey, G. 1990. Von Neumann and the early days of ergodic theory. In: The Legacy of John von Neumann, edited by J. Glimm, J. Impagliazzo and I. Singers. Vol. 50 of Proceedings of Symposia in Pure Mathematics, 25–38 (Providence: American Mathematical Society, 1990).Google Scholar
  22. Ornstein D. (1970) Bernoulli-shifts with the same entropy are isomorphic. Advances in Mathematics 4: 337–352MathSciNetMATHCrossRefGoogle Scholar
  23. Ornstein D. (1974) Ergodic Theory, Randomness, and Dynamical Systems. Yale University Press, New Haven and LondonMATHGoogle Scholar
  24. Ornstein, D. 1990. Von Neumann and ergodic theory. In: The Legacy of John von Neumann, edited by J. Glimm, J. Impagliazzo and I. Singers. Vol. 50 of Proceedings of Symposia in Pure Mathematics, 39–42 (Providence: American Mathematical Society, 1990).Google Scholar
  25. Parry W. (1971) Metric classification of ergodic nilflows and unipotent affines. American Journal of Mathematics 93: 819–828MathSciNetMATHCrossRefGoogle Scholar
  26. Petersen K. (1983) Ergodic Theory, Cambridge: Cambridge University PressMATHGoogle Scholar
  27. Rédei, M., ed. 2005. John von Neumann: Selected Letters, Vol. 27 of History of Mathematics. Rhode Island: American Mathematical Society and London Mathematical SocietyGoogle Scholar
  28. Reed M., Simon B. (1980) Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, San DiegoMATHGoogle Scholar
  29. Rohlin V. (1960) New progress in the theory of transformations with invariant measure. Russian Mathematical Surveys 15: 1–22MathSciNetCrossRefGoogle Scholar
  30. Rohlin V. (1967) Lectures on the entropy theory of measure-preserving transformations. Russian Mathematical Surveys 22: 1–52CrossRefGoogle Scholar
  31. Sinai Y. (1959) On the concept of entropy for dynamical systems. Doklady Akademii Nauk SSSR 124: 768–771MathSciNetMATHGoogle Scholar
  32. Sinai Y. (1963) Probabilistic ideas in ergodic theory. American Mathematical Society Translations 31: 62–84MATHGoogle Scholar
  33. Sinai Y. (1989) Kolmogorov’s work on ergodic theory. The Annals of Probability 17: 833–839MathSciNetMATHCrossRefGoogle Scholar
  34. Szász D. (1996) Boltzmann’s ergodic hypothesis. A conjecture for centuries? Studia Scientia Mathematica Hungaria 31: 299–322MATHGoogle Scholar
  35. Taub A., ed. 1961a. John von Neumann: Collected Works, Vol. II. Operators, Ergodic Theory and Almost Periodic Functions in a Group, Pergamon Press, New York and OxfordGoogle Scholar
  36. Taub, A., ed. 1961b. John von Neumann: Collected Works, Vol. IV. Continuous Geometry and Other Topics, Pergamon Press, New York and Oxford.Google Scholar
  37. von Neumann, J. 1932a. Applications of the ergodic hypothesis. Proceedings of the National Academy of Sciences 18: 263–266. Reprinted in (Taub, A., ed. 1961a. John von Neumann: Collected Works, Vol. II. Operators, Ergodic Theory and Almost Periodic Functions in a Group. New York and Oxford: Pergamon Press) No. 13.Google Scholar
  38. von Neumann, J. 1932b. Proof of the quasi-ergodic hypothesis. Proceedings of the National Academy of Sciences of the United States of America 18: 70–82. Reprinted in (Taub, A., ed. 1961a. John von Neumann: Collected Works, Vol. II. Operators, Ergodic Theory and Almost Periodic Functions in a Group. New York and Oxford: Pergamon Press) No. 12.Google Scholar
  39. von Neumann, J. 1932c. Zur Operatorenmethode in der klassischen Mechanik. The Annals of Mathematics 33: 587–642. Reprinted in (Taub, A., ed. 1961a. John von Neumann: Collected Works, Vol. II. Operators, Ergodic Theory and Almost Periodic Functions in a Group. New York and Oxford: Pergamon Press) No. 17.Google Scholar
  40. von Neumann, J. and Halmos, P. 1942. Operator methods in classical mechanics II. Annals of Mathematics 43: 332–350. Reprinted in (Taub, A., ed. 1961b. John von Neumann: Collected Works, Vol. IV. Continuous Geometry and Other Topics. New York and Oxford: Pergamon Press) No. 23.Google Scholar
  41. von Plato J. (1991) Boltzmann’s Ergodic Hypothesis. Archive for History of Exact Sciences 42: 71–89MathSciNetCrossRefGoogle Scholar
  42. Weiss B. (1972) The isomorphism problem in ergodic theory. Bulletin of the American Mathematical Society 78: 668–684MathSciNetMATHCrossRefGoogle Scholar
  43. Werndl C. (2009a) Are deterministic descriptions and indeterministic descriptions observationally equivalent?. Studies in History and Philosophy of Modern Physics 40: 232–242MathSciNetCrossRefGoogle Scholar
  44. Werndl C. (2009b) Justifying definitions in matemathics—going beyond Lakatos. Philosophia Mathematica 17: 313–340MathSciNetMATHCrossRefGoogle Scholar
  45. Zund J. (2002) Georg David Birkhoff and John von Neumann: A question of priority and the ergodic theorems, 1931–1932. Historia Mathematica 29: 138–156MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PhilosophyLogic and Scientific Method, London School of EconomicsLondonUK

Personalised recommendations