Advertisement

The quest for the size of the universe in early relativistic cosmology (1917–1930)

  • Giulio Peruzzi
  • Matteo Realdi
Article

Abstract

Before the discovery of the expanding universe, one of the challenges faced in early relativistic cosmology was the determination of the finite and constant curvature radius of space-time by using astronomical observations. Great interest in this specific question was shown by de Sitter, Silberstein, and Lundmark. Their ideas and methods for measuring the cosmic curvature radius, at that time interpreted as equivalent to the size of the universe, contributed to the development of the empirical approach to relativistic cosmology. Their works are a noteworthy example of the efforts made by modern cosmologists toward the understanding of the universe as a whole, its properties, and its content.

Keywords

Radial Velocity Curvature Radius Globular Cluster Astronomical Unit Monthly Notice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baade Walter. (1944) The resolution of Messier 32, NGC 205, and the central region of the Andromeda nebula. Astrophysical Journal 100: 137–146CrossRefGoogle Scholar
  2. Baade, Walter. 1952. A revision of the extragalactic distance scale. In: Transactions of the International Astronomical Union. Proceedings of the VIII General Assembly, ed. Pieter Oosterhoff, 397–398. Cambridge: Cambridge University Press.Google Scholar
  3. Baade Walter, Fritz Zwicky (1934) On Supernovæ. Proceedings of the National Academy of Sciences 20: 254–259CrossRefGoogle Scholar
  4. Barrow, John. 1990. The mysterious lore of large numbers. In Modern cosmology in retrospect, ed. Bruno Bertotti, et al., 67–93. Cambridge: Cambridge University Press.Google Scholar
  5. Bergia, Silvio, and Lucia Mazzoni. 1999. Genesis and evolution of Weyl’s reflections on de Sitter’s universe. In The expanding worlds of general relativity—Einstein Studies, vol. 7, ed. Hubert Goenner, et al., 325–342. Boston: Birkäuser.Google Scholar
  6. Campbell William. (1911) On the motions of the brighter B stars. Publications of the Astronomical Society of the Pacific 23(136): 85–108CrossRefGoogle Scholar
  7. Charlier Carl. (1925) On the structure of the universe. Fifth lecture. Publications of the Astronomical Society of the Pacific 37(218): 177–190CrossRefGoogle Scholar
  8. Coles Peter, Francesco Lucchin. (2002) Cosmology. The origin and evolution of cosmic structures. Wiley, ChichesterGoogle Scholar
  9. Crelinsten Jeffrey. (2006) Einstein’s jury. The race to test relativity. Princeton University Press, PrincetonzbMATHGoogle Scholar
  10. Curtis Heber. (1920) Modern theories of the spiral nebulæ. Journal of the Royal Astronomical Society of Canada 14(8): 317–327Google Scholar
  11. de Sitter Willem. (1916a) On Einstein’s theory of gravitation, and its astronomical consequences. First paper. Monthly Notices of the Royal Astronomical Society 76: 699–728Google Scholar
  12. de Sitter Willem. (1916b) Notebook on relativity. Willem de Sitter Archive, AFA-FC-WdS-132. Leiden University Library, Leiden, The NetherlandsGoogle Scholar
  13. de Sitter Willem. (1917a) On the relativity of inertia. Remarks concerning Einstein’s latest hypothesis. Koninklijke Akademie van Wetenschappen. Section of Science 19: 1217–1224Google Scholar
  14. de Sitter Willem. (1917b) On the curvature of space. Koninklijke Akademie van Wetenschappen. Section of Science 20: 229–243Google Scholar
  15. de Sitter Willem. (1917c) On Einstein’s theory of gravitation, and its astronomical consequences. Third paper. Monthly Notices of the Royal Astronomical Society 78: 3–28Google Scholar
  16. de Sitter Willem. (1920) On the possibility of statistical equilibrium of the universe. Koninklijke Akademie van Wetenschappen. Section of Science 23: 866–868Google Scholar
  17. de Sitter Willem. (1929) Letter to Schlesinger Willem de Sitter. Archive, AFA-FC-WdS-52. Leiden University Library, Leiden, The NetherlandsGoogle Scholar
  18. de Sitter Willem. (1932a) The size of the universe. Publications of the Astronomical Society of the Pacific 44(258): 89–104CrossRefGoogle Scholar
  19. de Sitter Willem. (1932b) Kosmos. Harvard University Press, CambridgezbMATHGoogle Scholar
  20. de Sitter, Willem. 1933. The astronomical aspect of the theory of relativity. University of California Publications in Mathematics 2, 8: 143–196. Berkeley: University of California Press.Google Scholar
  21. Desmet Ronny. (2007) Whitehead and the British reception of Einstein’s relativity: An addendum to Victor Lowe’s Whitehead biography. Process Studies Supplements 11: 1–44Google Scholar
  22. Dirac Paul. (1938) A new basis for cosmology. Proceedings of the Royal Society of London. Series A 165(921): 199–208CrossRefGoogle Scholar
  23. Douglas Allie Vibert. (1956) Forty minutes with Einstein. Journal of the Royal Astronomical Society of Canada 50(3): 99–102Google Scholar
  24. Earman John. (2001) Lambda: The constant that refuses to die. Archive for History of Exact Sciences 55: 189–220MathSciNetCrossRefGoogle Scholar
  25. Earman John, Jean Eisenstaedt. (1999) Einstein and singularities. Studies in the History and Philosophy of Modern Physics 30(2): 185–235zbMATHCrossRefGoogle Scholar
  26. Eddington Arthur. (1917) Council note on the motion of spiral nebulæ. Monthly Notices of the Royal Astronomical Society 77: 375–377Google Scholar
  27. Eddington Arthur. (1917) Letter to de Sitter Willem de Sitter. Archive, AFA-FC-WdS-11. Leiden University Library, Leiden, The NetherlandsGoogle Scholar
  28. Eddington Arthur. (1920) Space, time and gravitation. An outline of the general relativity theory. Cambridge University Press, CambridgeGoogle Scholar
  29. Eddington Arthur. (1923) The mathematical theory of relativity. Cambridge University Press, CambridgezbMATHGoogle Scholar
  30. Eddington Arthur. (1924) Radial velocities and the curvature of space-time. Nature 2847(113): 746–747CrossRefGoogle Scholar
  31. Eddington Arthur. (1930) Space and its properties. Nature 3162(125): 849–850CrossRefGoogle Scholar
  32. Eddington Arthur. (1931) On the value of the cosmical constant. Proceedings of the Royal Society of London. Series A 133(822): 605–615CrossRefGoogle Scholar
  33. Eddington Arthur. (1934) Willem de Sitter Obituary. Nature 134: 924–925CrossRefGoogle Scholar
  34. Ehlers, Jürgen. 1988. Hermann Weyl’s contributions to the general theory of relativity. In Exact sciences and their philosophical foundations. Vorträge des Internationalen Hermann-Weyl-Kongress, Kiel 1985, ed. Wolfgang Deppert, et al., 83–105. Frankfurt: Verlag Peter Lang.Google Scholar
  35. Einstein, Albert. 1917. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Königlich Preu β ische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 142–152. English translation: Cosmological considerations in the general theory of relativity. In Einstein, Albert. 1996. The collected papers of Albert Einstein—Vol. 6, the Berlin years: Writings, 1914–1917 (English translation), ed. A. J. Kox, et al. Princeton: Princeton University Press.Google Scholar
  36. Einstein, Albert. 1921a. Geometrie und Erfahrung. Erweiterte Fassung des Festvortrages gehalten an der Preußischen Akademie der Wissenschaften zu Berlin am 27. Januar 1921. Berlin: Springer. In Einstein, Albert. 2002. The collected papers of Albert Einstein—Vol. 7, the Berlin years: Writings, 1918–1921, ed. Michel Janssen, et al. Princeton: Princeton University Press, doc. 43: 421–432.Google Scholar
  37. Einstein, Albert. 1921b. Eine einfache Anwendung des Newtonschen Gravitationsgesetzes auf die kugelförmigen Sternhaufen. In Festschrift der Kaiser Wilhelm Gesellschaft zur Förderung der Wissenschaften zu ihrem zehnjährigen Jubiläum dargebracht von ihren Instituten: 50–52. Berlin: Springer. In Einstein, Albert. 2002. The collected papers of Albert Einstein—Vol. 7, the Berlin years: Writings, 1918–1921, ed. Michel Janssen, et al. Princeton: Princeton University Press, doc. 56: 420–425.Google Scholar
  38. Einstein, Albert. 1931. Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 235–237.Google Scholar
  39. Einstein, Albert. 1998. The collected papers of Albert Einstein—Vol. 8, the Berlin years: Correspondence, 1914–1918, ed. Robert Shulmann, et al. Princeton: Princeton University Press.Google Scholar
  40. Ellis, George. 1989. The expanding universe. A history of cosmology from 1917 to 1960. In Einstein and the history of general relativity—Einstein Studies, vol. 1, ed. Don Howard, and John Stachel, 367–431. Boston: Birkäuser.Google Scholar
  41. Ellis, George. 1990. Innovation, resistance and change. The transition to the expanding universe. In Modern cosmology in retrospect, ed. Bruno Bertotti, et al., 97–113. Cambridge: Cambridge University Press.Google Scholar
  42. Fernie J. Donald. (1969) The period-luminosity relation. A historical review. Publications of the Astronomical Society of the Pacific 81((483): 707–731CrossRefGoogle Scholar
  43. Flin Piotr, Hilmar Duerbeck. (2006) Silberstein, general relativity and cosmology. In Albert Einstein century international conference. American Institute of Physics proceedings conference 861: 1087–1094Google Scholar
  44. Freedman Whendy, Barry Madore. (2010) The Hubble constant. Annual Review of Astronomy and Astrophysics 48: 673–710CrossRefGoogle Scholar
  45. Friedmann, Aleksandr. 1922. Über die Krümmung des Raumes. Zeitschrift für Physik 10: 377–386. English translation: 1986. On the curvature of space. In Cosmological constants: Papers in modern cosmology, ed. Jeremy Bernstein, and Gerald Feinberg, 49–58. New York: Columbia University Press.Google Scholar
  46. Goenner, Hubert. 2001. Weyl’s contributions to cosmology. In Hermann Weyl’s ‘Raum—Zeit—Materie’ and a general introduction to his scientific work, ed. Erhard Scholz, 105–137. Boston: Birkhäuser.Google Scholar
  47. Gorelik, Gennady. 2002. Hermann Weyl and large numbers in relativistic cosmology. In Einstein studies in Russia—Einstein Studies, vol. 10, ed. Yuri Balashov, and Vladimir Vizgin, 91–106. Boston: Birkäuser.Google Scholar
  48. Harrison Edward. (2000) Cosmology. The science of the universe.. Cambridge University Press, CambridgeGoogle Scholar
  49. Henderson Archibald. (1925) Is the universe finite?. American Mathematical Monthly 32(5): 213–223MathSciNetzbMATHCrossRefGoogle Scholar
  50. Hentschel Klaus. (1994) Erwin Finlay Freundlich and testing Einstein’s theory of relativity. Archive for History of Exact Sciences 47: 143–201MathSciNetzbMATHCrossRefGoogle Scholar
  51. Hetherington Norriss. (1996) Hubble’s cosmology. A guided study of selected texts. Tucson, Pachart Publishing HouseGoogle Scholar
  52. Hoskin Michael. (1976) The “Great debate”. What really happened. Journal for the History of Astronomy 7: 169–182Google Scholar
  53. Hubble Edwin. (1925) Cepheids in spiral nebulæ. Observatory 48: 139–142Google Scholar
  54. Hubble Edwin. (1926) Extragalactic nebulæ. Astrophysical Journal 64: 321–369CrossRefGoogle Scholar
  55. Hubble Edwin. (1929) A relation between distance and radial velocity among extra-galactic nebulæ. Proceedings of the National Academy of Sciences 15: 168–173zbMATHCrossRefGoogle Scholar
  56. Kerszberg Pierre. (1989) The invented universe: The Einstein-de Sitter controversy (1916–17) and the rise of relativistic cosmology. Clarendon Press, OxfordGoogle Scholar
  57. Kragh Helge. (2007) Conceptions of cosmos. From myths to the accelerating universe: A history of cosmology. Oxford University Press, OxfordGoogle Scholar
  58. Kragh Helge, Robert Smith. (2003) Who discovered the expanding universe?. History of Science 41: 141–162MathSciNetGoogle Scholar
  59. Lanczos Kornel. (1922) Bemerkung zur de Sitterschen Welt. Physikalishe Zeitschrift 23: 539–543Google Scholar
  60. Lemaître Georges. (1925) Note on de Sitter’s universe. Journal of Mathematics and Physics 3: 188–192Google Scholar
  61. Lemaître, Georges. 1927. Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles 47: 49–56. In: 1972. L’académie pontificale des sciences en mémoire de son second président Georges Lemaître à l’occasion du cinquième anniversaire de sa mort. Pontificiæ Academiæ Scientiarum—Scripta Varia 36, 87–102. [English translation: Lemaître, Georges. 1931. A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulæ. Monthly Notices of the Royal Astronomical Society 91: 483–490].Google Scholar
  62. Lemaître Georges. (1931) A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulæ. Monthly Notices of the Royal Astronomical Society 91: 483–490zbMATHGoogle Scholar
  63. Lemaître Georges. (1963) Obituary for Robertson Georges Lemaître Archive, D32. Louvain-la-Neuve. Institute of Astronomy and Geophysics, BelgiumGoogle Scholar
  64. Lenz Wilhelm. (1926) Das Gleichgewicht von Materie und Strahlung in Einsteins geschlossener Welt. Physikalishe Zeitschrift 27: 642–645Google Scholar
  65. Lundmark Knut. (1919) Die Stellung der kugelförmigen Sternhaufen und Spiralnebel zu unserem Sternsystem. Astronomische Nachrichten 209(24): 369–380CrossRefGoogle Scholar
  66. Lundmark Knut. (1924) The determination of the curvature of space-time in de Sitter’s world. Monthly Notices of the Royal Astronomical Society 84: 747–770Google Scholar
  67. Lundmark Knut. (1925) The motions and the distances of spiral nebulæ. Monthly Notices of the Royal Astronomical Society 85: 865–894Google Scholar
  68. Merleau Ponty Jacques. (1965) Cosmologie du XX siècle. Gallimard, ParisGoogle Scholar
  69. North John. (1965) The measure of the universe: A history of modern cosmology. Oxford University Press, OxfordGoogle Scholar
  70. Nussbaumer Harry, Lydia Bieri. (2009) Discovering the expanding universe. Cambridge University Press, CambridgeGoogle Scholar
  71. Öpik Ernst. (1922) An estimate of the distance of the Andromeda nebula. Astrophysical Journal 55: 406–410CrossRefGoogle Scholar
  72. Osterbrock, Donald. 1990. The observational approach to cosmology. U.S. observatories pre-World War II. In Modern cosmology in retrospect, ed. Bruno Bertotti, et al., 247–289. Cambridge: Cambridge University Press.Google Scholar
  73. Osterbrock Donald. (2001) Walter Baade. A life in astrophysics. Princeton University Press, PrincetonGoogle Scholar
  74. Paddock George. (1916) The relation of the system of stars to the spiral nebulæ. Publications of the Astronomical Society of the Pacific 28: 109–115CrossRefGoogle Scholar
  75. Plaskett John. (1936) The dimensions and structure of the galactic system. Journal of the Royal Astronomical Society of Canada 30(5): 153–164Google Scholar
  76. Realdi, Matteo. 2009. Cosmology at the turning point of relativity revolution. The debates during the 1920s on the ’de Sitter effect’ (PhD Thesis). Italy: University of Padova.Google Scholar
  77. Realdi Matteo, Giulio Peruzzi. (2009) Einstein, de Sitter and the beginning of relativistic cosmology in 1917. General Relativity and Gravitation 41(2): 225–247MathSciNetzbMATHCrossRefGoogle Scholar
  78. Rindler Wolfgang. (1956) Visual horizons in world models. Monthly Notices of the Royal Astronomical Society 116: 662–677MathSciNetGoogle Scholar
  79. Robertson Howard. (1928) On relativistic cosmology. Philosophical Magazine 5(86): 835–848Google Scholar
  80. Robertson Howard. (1932) Reviewed work: ‘The size of the universe’ by Ludwik Silberstein. American Mathematical Monthly 39(10): 600–603CrossRefGoogle Scholar
  81. Sánchez Ron, José M. 1992. The reception of general relativity among British physicists and mathematicians (1915–1930). In Studies in the history of general relativity—Einstein Studies, vol. 3, ed. Jean Eisenstaedt, and A. J. Kox, 57–88. Boston: Birkäuser.Google Scholar
  82. Sandage Allan. (2004) Centennial history of the Carnegie Institution of Washington—vol. 1, the Mount Wilson Observatory: Breaking the code of cosmic evolution. Cambridge University Press, CambridgeGoogle Scholar
  83. Schemmel Matthias. (2005) An astronomical road to general relativity. The continuity between classical and relativistic cosmology in the work of Karl Schwarzschild. Science in Context 18: 451–478MathSciNetzbMATHCrossRefGoogle Scholar
  84. Schrödinger Erwin. (1957) Expanding universes. Cambridge University Press, CambridgeGoogle Scholar
  85. Schwarzschild, Karl. 1900. Über das zulässige Krümmungsmaass des Raumes. Vierteljahrsschrift der Astronomischen Gesellschaft 35: 337–347. English translation: 1998. On the permissible curvature of space. Classical and Quantum Gravity 15: 2539–2544.Google Scholar
  86. Shapley Harlow. (1919) On the existence of external galaxies. Publications of the Astronomical Society of the Pacific 31(183): 261–268CrossRefGoogle Scholar
  87. Silberstein Ludwik. (1918) General relativity without the equivalence hypothesis. Philosophical Magazine 6(36): 94–128Google Scholar
  88. Silberstein Ludwik. (1922) The theory of general relativity and gravitation. D. Van Nostrand Company, New YorkzbMATHGoogle Scholar
  89. Silberstein Ludwik (1924a) The radial velocities of globular clusters, and de Sitter’s cosmology. Nature 2836(113): 350–351CrossRefGoogle Scholar
  90. Silberstein Ludwik. (1924b) The curvature of de Sitter’s space-time derived from globular clusters. Monthly Notices of the Royal Astronomical Society 84(5): 363–366Google Scholar
  91. Silberstein Ludwik. (1924c) Determination of the curvature invariant of space-time. Philosophical Magazine 47(89): 907–918Google Scholar
  92. Silberstein Ludwik. (1924d) Further determinations of the curvature radius of space-time. Nature 2843(113): 602–603CrossRefGoogle Scholar
  93. Silberstein Ludwik. (1924e) Radial velocities and the curvature of space-time. Nature 2849(113): 818–819CrossRefGoogle Scholar
  94. Silberstein Ludwik. (1924f) Second memoire on the determination of the curvature invariant of space-time. Philosophical Magazine 48(62): 619–628Google Scholar
  95. Silberstein Ludwik. (1924g) Letter to Adams. Walter S. Adams Archive, 62.108. San Marino. Huntington Library, CA, USAGoogle Scholar
  96. Silberstein Ludwik. (1925) The determination of the curvature radius of space-time. In reply to Dr. Knut Lundmark. Monthly Notices of the Royal Astronomical Society 85(3): 285–290zbMATHGoogle Scholar
  97. Silberstein Ludwik. (1930) The size of the universe. Oxford University Press, OxfordzbMATHGoogle Scholar
  98. Smith Robert. (1979) The origins of the velocity–distance relation. Journal for the History of Astronomy 10(3): 133–165MathSciNetGoogle Scholar
  99. Smith Robert. (1982) The expanding universe. Astronomy’s ‘Great Debate’ 1900–1931. Cambridge University Press, CambridgeGoogle Scholar
  100. Smith Robert. (2009) Beyond the galaxy: The development of extragalactic astronomy 1885–1965. Part 2. Journal for the History of Astronomy 40(1): 71–107Google Scholar
  101. Strömberg Gustaf. (1925) Analysis of radial velocities of globular clusters and non-galactic nebulæ. Astrophysical Journal 61: 353–362CrossRefGoogle Scholar
  102. Tolman Richard. (1929) On the astronomical implications of the de Sitter line element for the universe. Astrophysical Journal 69(4): 245–274CrossRefGoogle Scholar
  103. Trimble Virginia. (1996) H 0. The incredible shrinking constant 1925–1975. Publications of the Astronomical Society of the Pacific 108: 1073–1082CrossRefGoogle Scholar
  104. Trumpler Robert. (1930) Absorption of light in the galacitc system. Publications of the Astronomical Society of the Pacific 42: 214–227CrossRefGoogle Scholar
  105. van der Kruit Piet, Klaas van Berkel. (2000) The legacy of J.C. Kapteyn. Kluwer Academic Publishers, DordrechtGoogle Scholar
  106. Vardanyan Mihran, Roberto Trotta, Joseph Silk. (2011) Applications of Bayesan model averaging to the curvature and size of the universe. Monthly Notices of the Royal Astronomical Society 413: L91–L95CrossRefGoogle Scholar
  107. Webb Stephen. (1999) Measuring the universe; the cosmological distance ladder. Springer-Praxis, LondonGoogle Scholar
  108. Weyl Hermann. (1923a) Raum, Zeit, Materie. Springer Verlag, BerlinGoogle Scholar
  109. Weyl Hermann. (1923b) Zur allgemeinen Relativitätstheorie. Physikalishe Zeitschrift 24: 230–232Google Scholar
  110. Wirtz Carl. (1922) Einiges zur Statistik der Radialbewegungen von Spiralnebeln und Kugelsternhaufen. Astronomische Nachrichten 215: 349–354CrossRefGoogle Scholar
  111. Wirtz Carl. (1924) de Sitters Kosmologie und die Radialbewegungen der Spiralnebel. Astronomische Nachrichten 222: 21–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of PadovaPadovaItaly

Personalised recommendations