Archive for History of Exact Sciences

, Volume 64, Issue 3, pp 269–300 | Cite as

The early application of the calculus to the inverse square force problem

Open Access
Article

Abstract

The translation of Newton’s geometrical Propositions in the Principia into the language of the differential calculus in the form developed by Leibniz and his followers has been the subject of many scholarly articles and books. One of the most vexing problems in this translation concerns the transition from the discrete polygonal orbits and force impulses in Prop. 1 to the continuous orbits and forces in Prop. 6. Newton justified this transition by lemma 1 on prime and ultimate ratios which was a concrete formulation of a limit, but it took another century before this concept was established on a rigorous mathematical basis. This difficulty was mirrored in the newly developed calculus which dealt with differentials that vanish in this limit, and therefore were considered to be fictional quantities by some mathematicians. Despite these problems, early practitioners of the differential calculus like Jacob Hermann, Pierre Varignon, and Johann Bernoulli succeeded without apparent difficulties in applying the differential calculus to the solution of the fundamental problem of orbital motion under the action of inverse square central forces. By following their calculations and describing some essential details that have been ignored in the past, I clarify the reason why the lack of rigor in establishing the continuum limit was not a practical problem.

Notes

Acknowledgements

I would like to thank Niccolo Guicciardini for numerous discussion and many helpful comments and corrections of an earlier draft of this manuscript.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Aiton E.J. (1954) The Inverse Problem of Central Forces. Annals of Science 20: 81–99CrossRefMathSciNetGoogle Scholar
  2. Aiton E.J. (1962) The Celestial Mechanics of Leibniz. Annals of Science 16: 65–82CrossRefGoogle Scholar
  3. Aiton, E. J., 1995 The vortex theory in competition with Newtonian celestial dynamics. Planetary astronomy from the Renaissance to the rise of astrophysics, part B, edited by R. Taton and C. Wilson (Cambridge University Press) pp. 3–21Google Scholar
  4. Barrow, I., 1916 The Geometrical Lectures of Isaac Barrow. Translations and notes by J. M. Child (Open Court, London), Quoted by N. Guicciardini in reference (Guicciardini 2009)Google Scholar
  5. Bernoulli, J., 1710 Extrait de la Résponse de M. Bernoulli à M. Herman, datée de Basle le 7. Octobre 1710. Memoires de l’Academie Royale des Sciences pp. 521–533Google Scholar
  6. Bernoulli, J., 1914 Die erste Integralrechnungen Ostwald Klassiker nr. 194 (Leipzig und Berlin, 1914) 63–67. Archives for the History of Exact Sciences 46, 222–251Google Scholar
  7. Bernoulli, J., 1999 Die Werke von Jakob Bernoulli: Bd. 5: Differentialgeometrie edited by D. Speiser, A. Weil and M. Mattmüller (Birkhaüsser)Google Scholar
  8. Bernoulli, 2008 Die Werke von Johannn I und Nicolaus II Bernoulli ed. P. Radelet-de Grave (Birkhäuser) pp. 125–128Google Scholar
  9. Bertoloni Meli D. (1991) Newton vs. Leibniz. Clarendon Press, OxfordGoogle Scholar
  10. Boyer C.B. (1989) A History of Mathematics. Wiley, New YorkMATHGoogle Scholar
  11. Bos H.J.M. (1973) Differentials, Higher-Order Differentials and the Derivative in the Leibnizian Calculus. Arch. Hist. Exact Sci. 14: 1–90CrossRefMathSciNetGoogle Scholar
  12. Brackenridge J.B. (2003) Newton’s Easy Quadratures “Omitted for the Sake of Brevity”. Archive for History of Exact Sciences 57: 313–336MATHCrossRefMathSciNetGoogle Scholar
  13. Cohen, I. B., 1999 Isaac Newton The Principia. A new translation by I. B. Cohen and Anne Whitman assisted by Julia Budenz, and A Guide to Newton’s Principia by I. B. Cohen (University of California Press) p. 115Google Scholar
  14. Erlichson H. (1994) The Visualization of Quadratures in the Mystery of Corollary 3 to Proposition 41 of Newton’s Principia. Historia Mathematica 21: 148–161MATHCrossRefMathSciNetGoogle Scholar
  15. Euler, L., 1736 Mechanica (St. Petersburg) Quoted in reference (Bertoloni Meli 1991) p. 214Google Scholar
  16. Guicciardini N. (1999) Reading the Principia: The Debate on Newton’s Mathematical Methods for Natural Philosophy from 187 to 1736. Cambridge University Press, Cambridge, pp 207–225CrossRefGoogle Scholar
  17. Guicciardini, N., 2008 Isaac Newton and Johann Bernoulli on central force motion. (to be published)Google Scholar
  18. Guicciardini N. (2009) Isaac Newton on Mathematical Certainty and Method. M.I.T. Press, CambridgeMATHGoogle Scholar
  19. Hermann, J., 1710a Extrait d’une Lettre de M. Herman à M. Bernoulli, datée de Padoüe le 12. Juillet 1710. Memoires de l’Academie Royale des Sciences pp. 519–521Google Scholar
  20. Hermann, J., 1710b Metodo d’investigare l’Orbite de’ Pianeti... Giornale de’ Letterati d’ Italia, vol. 2, 447–467Google Scholar
  21. Huygens, C., 1673 Horologium Oscillatorium (Paris). Reproduced in Ouvres Complètes de Christiaan Huygens, vol. 8 (Martinus Nijhoff). English translation in Richard J. Blackwell, Christiaan Huygens’s Pedulum Clock (Ames 1986)Google Scholar
  22. Huygens, C., 1905 Ouvres Complètes des Christiaan Huygens vol. 10 Correspondance 1691–1695 (Martinus Nijhoff, The Hague) p. 227. Translation from French to English by N. Guicciardini in ref. (Guicciardini 1999) p. 166Google Scholar
  23. Kline M. (1972) Mathematical Thought from Ancient to Modern Times vol. 1. Oxford University Press, OxfordGoogle Scholar
  24. Laplace, P. S., 1798 Traité de Méchanique Celeste Tome I, Premier Partie, Livre II, (Gauthier-Villars, Paris) p. 165, Ouvres Complétes de Laplace (Gauthiers-Villars, Paris, 1843) p. 181Google Scholar
  25. Leibniz, G., 1693 Supplementum geometriae dimensoriare ... Acta Eruditorum, 385–392. Translated into English from Leibniz, Mathematische Schriften, Abth. 2, Band I, 294–301, in A source book in mathematics, edited by E.D. Struik (Harvard University Press 1969) pp. 282–284Google Scholar
  26. Leibniz, G. W., 1849 Mathematische Schriften vol. 5, ed. C. I. Gerhardt (Berlin) p. 393Google Scholar
  27. Leibniz, G. W., 1973 Marginalia in Newoni Prncipia Mathematica (1687) edited by E. A. Fellman (Librarie Philosophique J Vrin, Paris)Google Scholar
  28. Mahoney, M. S., 1990 Barrow’s mathematics: between ancients and moderns, in Before Newton: The life and times of Isaac Barrow, edited by Mordechai Feingold (Cambridge University Press, Cambridge) pp. 179–249Google Scholar
  29. Mazzone, S. and Roero, C. S., 1997 Jacob Hermann and the diffusion of the Leibnizian calculus in Itally (Olschki, Firenze)Google Scholar
  30. Nauenberg, M., 1994 Newton’s Early Computation for Dynamics Google Scholar
  31. Nauenberg M. (2003) Kepler’s area law in the Principia: filling in some details in Newton’s proof of Proposition 1. Historia Mathematica 30: 441–456MATHCrossRefMathSciNetGoogle Scholar
  32. Nauenberg, M., 2005 Robert Hooke’s seminal contributions to orbital dynamics. Physics in Perspective 7, 4–34; reprinted in Robert Hooke Tercentennial Studies, edited by M. Cooper and M. Hunter (Ashgate, Cornwall, 2006) Physics in PerspectiveGoogle Scholar
  33. Newton, I., 1670–1673 The Mathematical Papers of Isaac Newton vol. 3, 1670–1673, edited by D.T. Whiteside (Cambridge University Press) pp. 154–155Google Scholar
  34. Newton, I., 1960 The correspondence of Isaac Newton vol. 3 edited by H. W. Turnbull (Cambridge University Press) p. 297Google Scholar
  35. Newton, I., 1968 The Mathematical Papers of Isaac Newton vol. 2, edited by D.T. Whiteside (Cambridge Universit Press, Cambridge) p. 270Google Scholar
  36. Newton, I., 1974 The Mathematical Papers of Isaac Newton vol. 6, 1684-1691, edited by D.T. Whiteside (Cambridge University Press, 1974) pp. 35–37Google Scholar
  37. Newton, I., 1676 The correspondence of Isaac Newton, vol. 2, 1676-1687, edited by H.W. Turnbull (Cambridge University Press 1976)Google Scholar
  38. Varignon, M., 1710 Des forces Centrales Memoires de l’Academie Royale des Sciences 533–544Google Scholar
  39. Wilson C. (1994) Newton’s Orbit Problem: A Historian’s Response. The College Mathematics Journal 25: 193–205CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of California Santa CruzSanta CruzUSA

Personalised recommendations