Advertisement

Archive for History of Exact Sciences

, Volume 64, Issue 2, pp 113–202 | Cite as

“Astonishing Successes” and “Bitter Disappointment”: The Specific Heat of Hydrogen in Quantum Theory

  • Clayton A. Gearhart
Article

Abstract

The specific heat of hydrogen gas at low temperatures was first measured in 1912 by Arnold Eucken in Walther Nernst’s laboratory in Berlin, and provided one of the earliest experimental supports for the new quantum theory. Even earlier, Nernst had developed a quantum theory of rotating diatomic gas molecules that figured in the discussions at the first Solvay conference in late 1911. Between 1913 and 1925, Albert Einstein, Paul Ehrenfest, Max Planck, Fritz Reiche, and Erwin Schrödinger, among many others, attempted theoretical descriptions of the rotational specific heat of hydrogen, with only limited success. Quantum theory also was central to the study of molecular spectra, where initially it was more successful. Moreover, the two problems interacted in sometimes surprising ways. Not until 1927, following Werner Heisenberg’s discovery of the behavior of indistinguishable particles in modern quantum mechanics, did American theorist David Dennison find a successful theory of the specific heat of hydrogen.

Keywords

Quantum Theory Rotational State Rigid Rotator Molecular Spectrum Rotational Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, Edwin Plimpton. 1920–1923. The quantum theory. Washington, D.C.: National Research Council. (Bulletin of the National Research Council 1, No. 5 [1920]; 2nd ed. 7, No. 39 [1923].)Google Scholar
  2. Allen H. Stanley (1924) The band spectrum of hydrogen. Proceedings of the Royal Society of London A106: 69–82Google Scholar
  3. Assmus, Alexi. 1991. Molecular structure and the genesis of the American quantum physics community, 1916–1926. Ph.D. dissertation, Harvard University.Google Scholar
  4. Assmus Alexi (1992a) The molecular tradition in early quantum theory. Historical Studies in the Physical and Biological Sciences 22: 209–231Google Scholar
  5. Assmus Alexi (1992b) The Americanization of molecular physics. Historical Studies in the Physical and Biological Sciences 23: 1–34Google Scholar
  6. Assmus, Alexi. 1999. Edwin C. Kemble. In National Academy of Sciences Biographical Memoirs, vol. 76, 178–197. Washington, D. C.: National Academies Press.Google Scholar
  7. Bahr, Eva von. 1913. Über die ultrarote absorption der gase. Verhandlungen der Deutschen Physikalischen Gesellschaft 15: 710–730 and 1150–1158.Google Scholar
  8. von Bahr Eva (1914) On the quantum theory and the rotation-energy of molecules. Philosophical Magazine 28: 71–83Google Scholar
  9. Barkan Diana Kormos (1999) Walther Nernst and the transition to modern physical science. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  10. Barker E.F. (1923) Molecular spectra and half-quanta. The Astrophysical Journal 58: 201–207Google Scholar
  11. Bartholomé Ernst (1950) Arnold Eucken. Die Naturwissenschaften 37: 481–483Google Scholar
  12. Bederson Benjamin (2005) Fritz Reiche and the Emergency Committee in aid of displaced foreign scholars. Physics in Perspective 7: 453–472MathSciNetGoogle Scholar
  13. Beller Mara (1999) Quantum dialogue: The making of a revolution. University of Chicago Press, ChicagozbMATHGoogle Scholar
  14. Birge, Raymond T. 1926. Electronic bands. Chapter IV in Kemble et al. (1926).Google Scholar
  15. Birge, Raymond T. 1966–1975?. History of the Physics Department, University of California, Berkeley. 5 vols. (unpublished).Google Scholar
  16. Birtwistle George (1928) The new quantum mechanics. Cambridge University Press, Cambridge and New YorkzbMATHGoogle Scholar
  17. Bjerrum, Niels. 1912. Über die ultraroten absorptionsspektren der gase. In Festschrift W. Nernst, 90–98. Halle: W. Knapp. Reprinted and translated in Bjerrum (1949, 34–40). Page references are to the translation.Google Scholar
  18. Bjerrum Niels (1914) Über ultrarote Spektren II. Eine directe Messung der Grösse von Energiequanta. Verhandlungen der Deutschen Physikalischen Gesellschaft 16: 640–642Google Scholar
  19. Bjerrum Niels (1949) Selected papers. Einar Munksgaard, CopenhagenGoogle Scholar
  20. Bohr, Niels. 1916. On the application of the quantum theory to periodic systems. Scheduled for publication in Philosophical Magazine, April 1916. Published in Bohr (1972–1996, vol 2, 431–461). Page references are to the proof sheets in the latter.Google Scholar
  21. Bohr, Niels. 1921. Abhandlungen über Atombau aus den Jahren 1913–1916. Braunschweig/Wiesbaden Vieweg.Google Scholar
  22. Bohr, Niels. 1972–1996. Niels Bohr: Collected works. 13 vols, ed. L. Rosenfeld et al. Amsterdam: North Holland.Google Scholar
  23. Boltzmann, Ludwig. 1884–1885. Über die Eigenschaften monozyklischer und anderer damit verwandter Systeme. Crelles Journal 98: 68–94. Reprinted in Boltzmann (1909, vol. 3, 122–152).Google Scholar
  24. Boltzmann, Ludwig. 1896–1898. Vorlesungen über Gastheorie. 2 vols. Leipzig: Barth. Reprinted in Roman U. Sexl, ed. Gesamtausgabe, Band 1: Vorlesungen über Gastheorie. Braunschweig/Wiesbaden: Vieweg. English translation in Lectures on Gas Theory. Berkeley: University of California Press, 1964; reprinted New York: Dover Press, 1995.Google Scholar
  25. Boltzmann, Ludwig. 1909. Wissenschaftliche Abhandlungen. 3 vols, ed. Fritz Hasenöhrl. Leipzig: Barth.Google Scholar
  26. Bonhoeffer K.F., Harteck P. (1929) Experimente über Para- und Orthowasserstoff. Die Naturwissenschaften 17: 182Google Scholar
  27. Born, Max. 1925. Vorlesungen über Atommechanik. Vienna and New York: Springer. English translation in The Mechanics of the Atom (London: Bell, 1927).Google Scholar
  28. Born Max (1978) My Life: Recollections of a Nobel Laureate. Scribner, New YorkGoogle Scholar
  29. Brand John C.D. (1995) Lines of light: the sources of dispersive spectroscopy 1800–1930. Gordon and Breach, New YorkGoogle Scholar
  30. Brinkworth J.H. (1925) On the measurement of the ratio of the specific heats using small volumes of gas. The ratios of the specific heats of air and hydrogen at atmospheric pressure and at temperatures between 20° C and –183°C. Proceedings of the Royal Society of London A107: 510–543Google Scholar
  31. Brinsmade James B., Kemble Edwin C. (1917) The occurrence of harmonics in the infra-red absorption spectra of diatomic gases. Proceedings of the National Academy of Sciences 3: 420–425Google Scholar
  32. Brush, Stephen G. 1976. The kind of motion we call heat. 2 vols. Amsterdam: North Holland.Google Scholar
  33. Cahan David (1989) An institute for an empire: The Physkalisch-Technische Reichsanstalt, 1871–1918. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  34. Carson, Cathryn. 1996. The peculiar notion of exchange forces: Origins in quantum mechanics, 1926-1928; The peculiar notion of exchange forces II: From nuclear forces to QED, 1929–1950. Studies in History and Philosophy of Modern Physics 27: 23–45 and 99–131.Google Scholar
  35. Cassidy David C. (1979) Heisenberg’s first core model of the atom: The development of a professional style. Historical Studies in the Physical Sciences 10: 187–224Google Scholar
  36. Cassidy David C. (1992) Uncertainty: The life and science of Werner Heisenberg. Freeman, New YorkGoogle Scholar
  37. Cassidy David C. (2007) Oppenheimer’s first paper: Molecular band spectra and a professional style. Historical Studies in the Physical and Biological Sciences 37: 247–268Google Scholar
  38. Chayut Michael (1994) From Berlin to Jerusalem: Ladislaus [sic] Farkas and the founding of physical chemistry in Israel. Historical Studies in the Physical and Biological Sciences 24: 237–263Google Scholar
  39. Clusius Klaus, Hiller Kurt (1929) Die spezifischen Wärmen des Parawasserstoffes in festem, flüssigem und gasförmigem Zustande. Zeitschrift für Physikalische Chemie B, 4: 159–168Google Scholar
  40. Clusius K., Bartholomé E. (1934) Die Rotationswärme der Moleküle HD und D2 und der Kernspin des D-Atoms. Zeitschrift für Elektrochemie 40: 524–529Google Scholar
  41. Coffey Patrick (2006) Chemical free energies and the third law of thermodynamics. Historical Studies in the Physical and Biological Sciences 36: 365–395Google Scholar
  42. Colby W.F., Meyer Charles F. (1921) On the absorption spectrum of hydrogen chloride. The Astrophysical Journal 53: 300–309Google Scholar
  43. Colby W.F., Meyer C.F., Bronk D.W. (1923) An extension of the fundamental infrared absorption band of hydrogen chloride. The Astrophysical Journal 57: 7–19Google Scholar
  44. Colby W.F. (1923) Note on the formulation of absorption bands in the near infra-red. The Astrophysical Journal 58: 303–306Google Scholar
  45. Colby, Walter F. 1926. Infra-red absorption bands. Chapter III in Kemble et al. (1926).Google Scholar
  46. Cornish R.E., Eastman E.D. (1928) The specific heat of hydrogen gas at low temperatures from the velocity of sound; and a precision method of measuring the frequency of an oscillating circuit. Journal of the American Chemical Society 50: 627–652Google Scholar
  47. Crane, H. Richard. 1980. David Mathias Dennison. In National Academy of Sciences Biographical Memoirs, vol. 52, 139–159. Washington, D.C.: National Academies Press.Google Scholar
  48. Curtis W.E. (1925) The Fulcher hydrogen bands. Proceedings of the Royal Society of London A107: 570–587Google Scholar
  49. Czerny M. (1925) Messungen im Rotationsspektrum des HCl im langwelligen Ultrarot. Zeitschrift für Physik 34: 227–244Google Scholar
  50. Czerny M. (1927) Die Rotationsspektren des Halogenwasserstoffe. Zeitschrift für Physik 44: 235–255Google Scholar
  51. Darrigol Olivier (1991) Statistics and combinatorics in early quantum theory, II: Early symptoma of indistinguishability and holism. Historical Studies in the Physical and Biological Sciences 21: 237–298Google Scholar
  52. Darrigol Olivier (1992) From c-numbers to q-numbers. University of California Press, BerkeleyGoogle Scholar
  53. Debye, Peter. 1914. Zustandsgleichung und Quantenhypothese mit einem Anhang über Wämeleitung. In Planck et al. (1914b, 17–60).Google Scholar
  54. Deichmann Ute (1999) The expulsion of Jewish chemists and biochemists from academia in Nazi Germany. Perspectives on Science 7: 1–86Google Scholar
  55. Dennison David M. (1926) The rotation of molecules. Physical Review 28: 318–333Google Scholar
  56. Dennison David M. (1927a) Wave mechanics and the rotation of homopolar molecules. Nature 119: 316–317zbMATHGoogle Scholar
  57. Dennison David M. (1927b) A note on the specific heat of the hydrogen molecule. Proceedings of the Royal Society of London A115: 483–486Google Scholar
  58. Dennison David M. (1974) Recollections of physics and physicists during the 1920’s. American Journal of Physics 42: 1051–1056Google Scholar
  59. Desalvo Agostino (1992) From the chemical constant to quantum statistics: A thermodynamic route to quantum mechanics. Physis 29: 465–537MathSciNetGoogle Scholar
  60. Dieke G.H. (1925) Over de soortelijke warmte van woterstof. Physica 5: 412–419zbMATHGoogle Scholar
  61. Dieke, G.H., and J.J. Hopfield. 1926a. Absorption spectrum of the hydrogen molecule. Nature 118: 592 (October 31, 1926).Google Scholar
  62. Dieke G.H., Hopfield J.J. (1926b) Das Absorptionsspectrum des Wasserstoffs und die Analyse seines ultravioletten Bandenspektrums. Zeitschrift für Physik 40: 299–308Google Scholar
  63. Dieke G.H., Hopfield J.J. (1927) The structure of the ultra-violet spectrum of the hydrogen molecule. Physical Review 30: 400–417Google Scholar
  64. Dirac P.A.M. (1926) On the theory of quantum mechanics. Proceedings of the Royal Society of London A112: 661–677Google Scholar
  65. Dostrovsky, Siglia. 1970. Arnold Thomas Eucken. In Gillispie (1970–1980, vol 4, 413–414).Google Scholar
  66. Duncan, Anthony, and Michel Janssen. 2007. On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle. Parts one and two. Archive for History of Exact Sciences 61: 553–624 and 625–671.Google Scholar
  67. Eckert, Michael. 2008. Max Planck’s later work on quantum theory. In Planck (2008, 643–652).Google Scholar
  68. Eggert J. (1963) Klaus Clusius. Physikalische Blätter 19: 319Google Scholar
  69. Ehrenfest, P. 1913. Bemerkung betrifs der Spezifischen Wärme zweiatomiger Gase. Verhandlungen der Deutschen Physikalischen Gesellschaft 15: 451–457. Reprinted in Ehrenfest (1959, 333–339).Google Scholar
  70. Ehrenfest, P., and R.C. Tolman. 1924. Weak Quantization. Physical Review 24: 287–295. Reprinted in Ehrenfest (1959, 498–506).Google Scholar
  71. Ehrenfest, Paul. 1959. Paul Ehrenfest: Collected scientific papers. ed. Martin J. Klein. Amsterdam: North Holland.Google Scholar
  72. Einstein, Albert. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Annalen der Physik 17: 549–560. Reprinted in Einstein (1987–2009, vol. 2, Doc. 16).Google Scholar
  73. Einstein, Albert. 1906. Zur Theorie der Brownschen Bewegung. Annalen der Physik 19: 371–381. Reprinted in Einstein (1987–2009, vol. 2, Doc. 32).Google Scholar
  74. Einstein, Albert. 1907. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Annalen der Physik 22: 180–190. Reprinted in Einstein (1987–2009, vol. 2, Doc. 9).Google Scholar
  75. Einstein, Albert. 1909a. Zum gegenwärtigen Stand des Strahlungsproblems. Physikalische Zeitschrift 10: 185–193. Reprinted in Einstein (1987–2009, vol. 2, Doc. 56).Google Scholar
  76. Einstein, Albert. 1909b. Über die Entwickelung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. Verhandlungen der Deutschen Physikalischen Gesellschaft 7: 482–500. Reprinted in Einstein (1987–2009, vol. 2, Doc. 60).Google Scholar
  77. Einstein, Albert, and Ludwig Hopf. 1910. Statistische Untersuchung der Bewegung eines Resonators in einem Strahlungsfeld. Annalen der Physik 33: 1105–1115. Reprinted in Einstein (1987–2009, vol. 3, Doc. 8).Google Scholar
  78. Einstein, Albert. 1911. Zum gegenwärtigen Stande des Problems der spezifischen Wärme. In Eucken (1914, 330–352). Reprinted in Einstein (1987–2009, vol. 3, Doc. 26).Google Scholar
  79. Einstein, Albert. 1913. Max Planck als Forscher. Die Naturwissenschaften 1: 1077–1079. Reprinted in Einstein (1987–2009, vol. 4, Doc. 23).Google Scholar
  80. Einstein, Albert, and Otto Stern. 1913. Einige Argumente für die Annahme einer molekularen Agitation beim absoluten Nullpunkt. Annalen der Physik 40: 551–560. Reprinted in Einstein (1987–2009, vol. 4, Doc. 11).Google Scholar
  81. Einstein, Albert. 1942. The work and personality of Walther Nernst. Scientific Monthly 54: 195–196. Reprinted in Albert Einstein. 1956. Out of My Later Years, 233–235. Secaucus: Citadel.Google Scholar
  82. Einstein, Albert. 1987–2009. The collected papers of Albert Einstein. 12 vols, ed. John Stachel et al. Princeton: Princeton University Press.Google Scholar
  83. Epstein Paul (1916) Über die spezifische Wärme des Wasserstoffs. Verhandlungen der Deutschen Physikalischen Gesellschaft 18: 398–413Google Scholar
  84. Eucken Arnold (1909) Über die Bestimmung spezifischer Wärmen bei tiefen Temperaturen. Physikalische Zeitschrift 10: 586–589Google Scholar
  85. Eucken, Arnold. 1912. Die Molekularwärme des Wasserstoffs bei tiefen Temperaturen. Sitzungsberichte, Preussische Akademie der Wissenschaft (Berlin): 141–151.Google Scholar
  86. Eucken, Arnold, editor and translator. 1914. Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30 Ockober bis 3 November 1914). Halle: W. Knapp.Google Scholar
  87. Eucken Arnold (1920a) Bericht über die Andwendung der Quantenhypothese auf Rotationsbewegung der Gasmoleküle. Jahrbuch der Radioaktivität und Elektronik 16: 361–411Google Scholar
  88. Eucken Arnold (1920b) Rotationsbewegung und absolute Dimensionen der Moleküle. Zeitschrift für Elektrochemie 26: 377–383Google Scholar
  89. Eucken, Arnold. 1926. Quantenprobleme der Wärmelehre. Zeitschrift für technische Physik 7: 180–187 and 216–223.Google Scholar
  90. Eucken A. (1929) Die Nachweis einer Umwandlung der antisymmetrischen Wasserstoffmolecülart in die symmetrische. Die Naturwissenschaften 17: 182Google Scholar
  91. Eucken A., Hiller K. (1929) Der Nachweis einer Umwandlung des Orthowasserstoffes in Parawasserstoff durch Messung der spezifischen Wärme. Zeitschrift für Physikalische Chemie B, 4: 142–157Google Scholar
  92. Farkas Adalbert, Farkas Ladislas (1934) Experiments on heavy hydrogen. Part I. Proceedings of the Royal Society of London A144: 467–480Google Scholar
  93. Farkas A., Farkas L., Harteck P. (1934) Experiments on heavy hydrogen. II. The Ortho–para conversion. Proceedings of the Royal Society of London A144: 481–493Google Scholar
  94. Farkas Adalbert (1935) Orthohydrogen, parahydrogen, and heavy hydrogen. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  95. Farkas A. (1989) Paul Harteck: The triumphant decade 1925–1934. Ambix 36: 91–102Google Scholar
  96. Fellows, Frederick Hugh. 1985. J. H. Van Vleck: The early life and work of a mathematical physicist. Ph.D. dissertation, University of Minnesota.Google Scholar
  97. Fermi Enrico (1926) Zur Quantelung des idealen monatomigen Gases. Zeitschrift für Physik 36: 902–912Google Scholar
  98. Fokker A.D. (1914a) Über Brownsche Bewegung im Strahlungsfeld. Physikalische Zeitschrift 15: 96–98Google Scholar
  99. Fokker A.D. (1914b) Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Annalen der Physik 43: 810–820Google Scholar
  100. Foote Paul D., Mohler F.L. (1922) The origin of spectra. Chemical Catalog Company, New YorkGoogle Scholar
  101. Fowler, R.H. 1929–1936. Statistical Mechanics. Cambridge: Cambridge University Press; 2nd ed. 1936.Google Scholar
  102. Fujisaki Chiyoko (1982) P. Drude’s theory of dispersion of light and atomic model. Historia Scientarum 22: 19–67Google Scholar
  103. Fujisaki Chiyoko (1983a) From Delandres to Kratzer—development of the understanding of the origin of infrared band spectra, I (1880–1913). Historia Scientarum 24: 53–75Google Scholar
  104. Fujisaki Chiyoko (1983b) From Delandres to Kratzer—development of the understanding of the origin of infrared band spectra, II (1913–1920). Historia Scientarum 25: 57–86Google Scholar
  105. Fulcher Gordon S. (1913) Spectra of low potential discharges in air and hydrogen. The Astrophysical Journal 37: 60–71Google Scholar
  106. Gavroglu Kostas, Simões Ana (1994) The Americans, the Germans, and the beginnings of quantum chemistry: The confluence of diverging traditions. Historical Studies in the Physical and Biological Sciences 25: 47–110Google Scholar
  107. Gearhart Clayton A. (1996) Specific heats and the equipartition law in introductory textbooks. American Journal of Physics 64: 995–1000Google Scholar
  108. Gearhart Clayton A. (2002) Planck, the quantum, and the historians. Physics in Perspective 4: 170–215zbMATHMathSciNetGoogle Scholar
  109. Giacomini F.A. (1925) The temperature dependence of the molecular heats of gases, especially ammonia, methane, and hydrogen, at low temperature. Philosophical Magazine 50: 146–156Google Scholar
  110. Giauque W.F., Johnston H.L. (1928) Symmetrical and antisymmetrical hydrogen and the third law of thermodynamics. Thermal equilibrium and the triple point. Journal of the American Chemical Society 50: 3221–3228Google Scholar
  111. Gibbs, Josiah Willard. 1902. Elementary principles in statistical mechanics. New York: Scribner. Reprinted (Woodbridge, CT: Oxbow Press, 1981).Google Scholar
  112. Gillispie, Charles Coulston, editor. 1970–1980. Dictionary of scientific biography. vols.1–16. New York: Charles Scribner’s Sons.Google Scholar
  113. Goldberg, Stanley, Stuewer, Roger H. (eds) (1988) The Michelson era in American science: 1870–1930. American Institute of Physics, New YorkGoogle Scholar
  114. Goldstein, Herbert. 1959. Classical mechanics. Reading: Addison-Wesley. 2nd ed. 1980; 3rd ed. 2002.Google Scholar
  115. Harteck Paul (1960) Physical chemists in Berlin, 1919–1933. Journal of Chemical Education 37: 462–466Google Scholar
  116. Heisenberg, Werner. 1925. Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik 33: 879–893. English translation in B. L. van der Waarden, ed. Sources of Quantum Mechanics, 261–276. New York: Dover, 1967. Page references are to the translation.Google Scholar
  117. Heisenberg Werner (1926a) Mehrkörperproblem und Resonanz in der Quantenmechanik. Zeitschrift für Physik 38: 411–426Google Scholar
  118. Heisenberg, Werner. 1926b. Über die Spektra von Atomsystemen mit zwei Elektronen. Zeitschrift für Physik 39: 499–518. English translation in W. R. Hindmarsh, ed. Atomic Spectra, 219–242. New York: Pergamon Press, 1967.Google Scholar
  119. Heisenberg Werner (1927) Mehrkörperproblem und Resonanz in der Quantenmechanik, II. Zeitschrift für Physik 41: 239–267Google Scholar
  120. Hentschel, Klaus (eds) (1996) Physics and national socialism, an anthology of primary sources. Birkhäuser, BaselzbMATHGoogle Scholar
  121. Herzberg Gerhard (1950) Molecular spectra and molecular structure I. Spectra of diatomic molecules. D. Van Nostrand, New YorkGoogle Scholar
  122. Herzberg, Gerhard. 1973. Spectroscopy and molecular structure. In Physics 50 Years Later, ed. Sanborn C. Brown, 101–162. Washington, DC: National Academy of Sciences.Google Scholar
  123. Hettema, Hinne, translator and editor. 2000. Quantum chemistry: Classic scientific papers. Singapore: World Scientific.Google Scholar
  124. Herzfeld Karl F. (1925) Kinetische Theorie der Wärme. Vieweg, BraunschweigzbMATHGoogle Scholar
  125. Hiebert, Erwin N. 1980. Hermann Walther Nernst. In Gillispie (1970–1980, vol. 15, 432–453).Google Scholar
  126. Hiebert, Erwin N. 1983. Walther Nernst and the Application of Physics to Chemistry. In Rutherford Aris et al., Springs of Scientific Creativity, 203–231. Minneapolis: University of Minnesota Press.Google Scholar
  127. Holm E. (1913) Anwendung der neuren Planckschen Quantenhypothese zur Berechnung der rotatorischen Energie des zweiatomigen Gases. Annalen der Physik 42: 1311–1320Google Scholar
  128. Holm E.A. (1915) Berichtigung des Curie-Langevinschen Magnetisierungsgesetzes für die molekulare Weglänge. Annalen der Physik 47: 1–48Google Scholar
  129. Holmes, Frederic L., editor. 1990. Dictionary of scientific biography. vols. 17–18. New York: Charles Scribner’s Sons.Google Scholar
  130. Holton, Gerald. 1988. On the hesitant rise of quantum physics research in the United States. In Thematic origins of scientific thought: Kepler to Einstein, Gerald Holton, On the hesitant 147–187. Cambridge: Harvard University Press. An earlier version is in Goldberg and Stuewer (1988, 177–205).Google Scholar
  131. Hori Takeo (1927) Über die Analyse des Wasserstoffbandenspektrums in äußersten Ultraviolett. Zeitschrift für Physik 44: 834–854Google Scholar
  132. Houston William V. (1927) The fine structure of the helium arc spectrum. Proceedings of the National Academy of Sciences 13: 91–94Google Scholar
  133. Huang Kerson (2001) Introduction to statistical physics. CRC Press, New YorkzbMATHGoogle Scholar
  134. Hund, Friedrich. 1926. Zur Deutung einiger Erscheinungen in den Molekelspecktren. Zeitschrift für Physik 36: 657–674. English translation in Hettema (2000, 199–213).Google Scholar
  135. Hund F. (1927) Zur Deutung der Molekelspektren. II. Zeitschrift für Physik 42: 93–120Google Scholar
  136. Hutchisson E., Van Vleck J.H. (1925) Half quanta and the specific heat of hydrogen. Physical Review 25: 243–244Google Scholar
  137. Hutchisson Elmer (1926) On the quantum theory of the specific heat of hydrogen part II. Comparison of various theories with experiment. Physical Review 28: 1022–1029Google Scholar
  138. Imes E.S. (1919) Measurement in the near infrared absorption of some diatomic gases. The Astrophysical Journal 50: 251–276Google Scholar
  139. Jaenicke W. (1957) Karl-Friedrich Bonhoeffer. Physikalische Blätter 13: 369–370Google Scholar
  140. Jammer, Max. 1966–1989. The conceptual development of quantum mechanics. New York: McGraw-Hill. Second edition Los Angeles: Tomash and New York: American Institute of Physics (1989). Page references are to the first edition.Google Scholar
  141. Janssen Michel (2002) COI Stories: Explanation and evidence in the history of science. Perspectives on Science 10: 457–522MathSciNetGoogle Scholar
  142. Kelvin Lord (1901) Nineteenth century clouds over the dynamical theory of heat and light. Philosophical Magazine 2: 1–40Google Scholar
  143. Kemble Edwin C. (1916a) The distribution of angular velocities among diatomic gas molecules. Physical Review 8: 689–700Google Scholar
  144. Kemble Edwin C. (1916b) On the occurrence of harmonics in the infra-red absorption spectra of gases. Physical Review 8: 701–714Google Scholar
  145. Kemble, Edwin Crawford (1917). Studies in the application of the quantum hypothesis to the kinetic theory of gases and to the theory of their infra-red absorption bands. Ph.D. dissertation, Harvard University.Google Scholar
  146. Kemble Edwin C. (1918) A new formula for the temperature variation of the specific heat of hydrogen. Physical Review 11: 156–158Google Scholar
  147. Kemble Edwin C. (1920) The Bohr theory and the approximate harmonics in the infra-red spectra of diatomic gases. Physical Review 15: 95–109Google Scholar
  148. Kemble E.C., Van Vleck J.H. (1923a) Theory of the temperature variation of the specific heat of hydrogen. Physical Review 21: 372Google Scholar
  149. Kemble E.C., Van Vleck J.H. (1923b) On the theory of the temperature variation of the specific heat of hydrogen. Physical Review 21: 653–661Google Scholar
  150. Kemble, Edwin C., Raymond T. Birge, Walter F. Colby, F. Wheeler Loomis, and Leigh Page. 1926. Molecular Spectra in Gases. Washington, D.C.: National Research Council. (Bulletin of the National Research Council 11, No. 57.)Google Scholar
  151. Klein Martin J. (1964) Einstein and the wave-particle duality. The Natural Philosopher 3: 1–49Google Scholar
  152. Klein Martin J. (1965) Einstein, specific heats, and the early quantum theory. Science 148: 173–180Google Scholar
  153. Klein, Martin J. 1970. Paul Ehrenfest, The making of a theoretical physicist, vol. 1. Amsterdam: North Holland.Google Scholar
  154. Koertige, Noretta. ed. 2008. Dictionary of scientific biography. vols. 19–25. New York: Charles Scribner’s Sons.Google Scholar
  155. Kox A.J. (2006) Confusion and clarification: Albert Einstein and Walter Nernst’s Heat Theorem, 1911–1916. Studies in History and Philosophy of Modern Physics 37: 101–114MathSciNetGoogle Scholar
  156. Kramers H.A. (1923) Über die Quantelung rotierender Moleküle. Zeitschrift für Physik 13: 343–350Google Scholar
  157. Kramers H.A., Pauli W. Jr. (1923) Zur Theorie der Bandenspectren. Zeitschrift für Physik 13: 351–367Google Scholar
  158. Kratzer Adolf (1920) Die ultraroten Rotationsspektren der Halogenwasserstoffe. Zeitschrift für Physik 3: 289–307Google Scholar
  159. Kratzer, Adolf. 1922a. Störungen und Kombinationsprinzip in System der violetten Cyanbanden. Sitzungsbereichte, Bayerischen Akademie der Wissenschaften: 107–118.Google Scholar
  160. Kratzer Adolf (1922b) Der heutige Stand der Theorie der Bandenspektren. Ergebnisse der Exakten Naturwissenschaften 1: 315–334Google Scholar
  161. Kratzer Adolf (1923a) Die Feinstruktur einer Klasse von Bandenspektren. Annalen der Physik 71: 72–103Google Scholar
  162. Kratzer Adolf (1923b) Kombinationsbeziehungen und Terme im Bandenspektrum des Heliums. Zeitschrift für Physik 16: 353–366Google Scholar
  163. Kronig, R. de L., and I.I. Rabi. 1927. The symmetrical top in the undulatory mechanics. Physical Review 29: 262–269Google Scholar
  164. Kuhn Thomas S. (1978) Black-body theory and the quantum discontinuity, 1894-1912. Oxford University Press, New YorkGoogle Scholar
  165. Kutzelnigg, Werner. 1996. Friedrich Hund and chemistry. Angewandte Chemie (International Edition in English) 35: 572–586.Google Scholar
  166. Lenz Wilhelm (1919) Zur Theorie der Bandenspektren. Verhandlungen der Deutschen Physikalischen Gesellschaft 21: 632–643Google Scholar
  167. Lessheim Hans (1926) Über den Elektronendrehimpuls rotierender Moleküle. Zeitschrift für Physik 35: 831–849Google Scholar
  168. Lewis, William C. McC. 1916–1924. A system of physical chemistry. 3 vols. vol. 3, Quantum Theory, first appeared as part of the 2nd ed, (1919); 3rd ed. 1924. London: Longmans, Green.Google Scholar
  169. Lorentz H.A. (1910) Alte und neue Fragen der Physik. Physikalische Zeitschrift 11: 1234–1257Google Scholar
  170. Lyman Theodore (1906) The spectrum of hydrogen in the region of extremely short wavelength. The Astrophysical Journal 23: 181–210Google Scholar
  171. Lyman, Theodore. 1914–1928. The spectroscopy of the extreme ultra-violet. London: Longmans, Green. 2nd ed. 1928.Google Scholar
  172. Lyman Theodore (1915) The extension of the spectrum beyond the Schumann region. Proceedings of the National Academy of Sciences 1: 368–371Google Scholar
  173. Lyman Theodore (1922) The spectroscopy of the extreme ultra-violet. Science 55: 161–166Google Scholar
  174. Lyman Theodore (1926) The reversal of the hydrogen series in the extreme ultra-violet. Science 64: 89–90Google Scholar
  175. Maxwell, James Clerk. 1875. On the dynamical evidence of the molecular constitution of bodies. Nature 11: 357–359 and 374–377. Reprinted in The Scientific Papers of James Clerk Maxwell, vol. 2, 418–438. 2 vols. Edited by W. D. Niven. Cambridge and New York: Cambridge University Press, 1890. Reprinted New York: Dover Press, 1952.Google Scholar
  176. Mayer Joseph Edward, Mayer Maria Goeppert (1940) Statistical mechanics. Wiley, New YorkzbMATHGoogle Scholar
  177. Mecke R. (1924) Über Intensitätsanomalien bei Bandenspektra. Physikalische Zeitschrift 25: 597–599Google Scholar
  178. Mehra, Jagdish, and Helmut Rechenberg. 1982–2000. The historical development of quantum mechanics. 6 vols. Vienna: Springer.Google Scholar
  179. McGucken William (1969) Nineteenth-century spectroscopy. Johns Hopkins Press, BaltimoreGoogle Scholar
  180. Mickens, Ronald E. 1998. Elmer S. Imes. In American National Biography, vol. 11, 636–637. Oxford: Oxford University Press.Google Scholar
  181. Mickens, Ronald E. 1999. Elmer Samuel Imes. In J. C. Smith, editor, Notable Black American Men, 589–591. Detroit: Gale Research.Google Scholar
  182. Milonni P.W. (1981) Quantum mechanics of the Einstein–Hopf model. American Journal of Physics 49: 177–184MathSciNetGoogle Scholar
  183. Milonni P.W., Shih M.-L. (1991) Zero-point energy in early quantum theory. American Journal of Physics 59: 684–698Google Scholar
  184. Milonni Peter W. (1994) The quantum vacuum. Academic Press, New YorkGoogle Scholar
  185. Mulliken Robert S. (1931) The interpretation of band spectra, part IIc. Reviews of Modern Physics 3: 90–155Google Scholar
  186. Navarro Luis, Pérez Enric (2006) Paul Ehrenfest: The genesis of the adiabatic hypothesis, 1911–1914. Archive for History of Exact Sciences 60: 209–267MathSciNetGoogle Scholar
  187. Needell, Allan A. 1980. Irreversibility and the failure of classical dynamics: Max Planck’s work on the quantum theory, 1900–1915. Ph.D. dissertation, Yale University.Google Scholar
  188. Nernst, Walther. 1893–1926. Theoretische Chemie vom Standpunkte der Avogadroschen Regel und der Thermodynamik. Stuttgart: Ferdinand Enke, first through fifteenth editions.Google Scholar
  189. Nernst, W. 1906a. Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachrichten Göttingen Gesellschaft: 1–40.Google Scholar
  190. Nernst, W. 1906b. Über die Beziehungen zwischen Wärmeentwicklung und maximaler Arbeit bei kondensierten Systemen. Sitzungsberichte, Preussische Akademie der Wissenschaft (Berlin): 933–940.Google Scholar
  191. Nernst Walther (1907) Experimental and theoretical applications of thermodynamics to chemistry. Yale University Press, New HavenGoogle Scholar
  192. Nernst, W. 1910. Untersuchungen über die spezifische Wärme bei tiefen Temperaturen. II. Sitzungsberichte, Preussische Akademie der Wissenschaft (Berlin): 262–282.Google Scholar
  193. Nernst W. (1911a) Der Energieinhalt fester Stoffe. Annalen der Physik 36: 395–439Google Scholar
  194. Nernst Walther (1911b) Zur Theorie der Spezifischen Wärme und über die Anwendung der Lehre von der Energiequanten auf physikalischen chemischen Fragen überhaupt. Zeitschrift für Electrochemie 17: 265–275Google Scholar
  195. Nernst Walther, Lindemann F.A. (1911) Spezifische Wärme und Quantentheorie. Zeitschrift für Electrochemie 17: 817–827Google Scholar
  196. Nernst Walther (1912) Der Energie Einhalt der Gase. Physikalische Zeitschrift 13: 1064–1068Google Scholar
  197. Nernst Walther (1914) Über die Anwendung des neuen Wärmesatzes auf Gase. Zeitschrift für Electrochemie 20: 357–360Google Scholar
  198. Nernst, Walther. 1918, 1924. Die theoretischen und experimentellen Grundlagen des neuren Wärmesatzes. Halle: W. Knapp. 2nd ed. 1924. English translation in Walther Nernst, The new heat theorem. New York: Dover, 1969.Google Scholar
  199. Nielsen H.H. (1960) Harrison McAllister Randall: A half-century of infrared spectroscopy. Journal of the Optical Society of America 50: 1147Google Scholar
  200. Nye Mary Jo (1972) Molecular reality: A perspective on the scientific work of Jean Perrin. American Elsevier, New YorkGoogle Scholar
  201. Oesper Ralph E. (1950) Arnold Eucken. Journal of Chemical Education 27: 540–541Google Scholar
  202. Pais Abraham (1991) Niels Bohr’s Times. Oxford University Press, OxfordGoogle Scholar
  203. Partington J.R., Howe A.B. (1925) The ratio of the specific heats of hydrogen. Proceedings of the Royal Society of London A109: 286–291Google Scholar
  204. Partington J.R., Shilling W.G. (1924) The specific heats of gases. E. Benn, LondonGoogle Scholar
  205. Pérez Enric (2009) Ehrenfest’s adiabatic hypothesis and the old quantum theory, 1916–1918. Archive for History of Exact Sciences 63: 81–125MathSciNetGoogle Scholar
  206. Perrin, Jean. 1923. Atoms. New York: Van Nostrand. Reprinted (Woodbridge, CT: Oxbow Press, 1990).Google Scholar
  207. Pier Mathias (1909) Die spezifischen Wärmen von Argon, Wasserdampf, Stickstoff, Wasserstoff bei sehr hohen Temperaturen. Zeitschrift für Elektrochemie 15: 536–540CrossRefGoogle Scholar
  208. Planck, Max. 1906. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: Barth. Reprinted in Max Planck, The theory of heat radiation (New York: American Institute of Physics, 1988).Google Scholar
  209. Planck, Max. 1914a. Die Gesetze der Wärmestrahlung und die Hypothese der elementaren Wirkungsquanten. In Eucken (1914, 76–94). Reprinted in Planck (1958, vol. II, 269–286).Google Scholar
  210. Planck Max et al (1914b) Vorträge über die kinetische Theorie der Materie und der Electrizität. Leipzig, TeubnerGoogle Scholar
  211. Planck, Max. 1915a. Über die Energieverteilung in einem System rotierender Dipole. In Elster-Geitel Festschrift, 313–317. Braunschwieg: Vieweg. Reprinted in Planck (1958, vol. II, 336–340).Google Scholar
  212. Planck, Max. 1915b. Die Quantenhypothese für Molekeln mit mehreren Freiheitsgraden (Erste Mitteilung). Verhandlungen der Deutschen Physikalischen Gesellschaft 17: 407–418. Reprinted in Planck (1958, vol. II, 349–360). Page references are to Planck (1958).Google Scholar
  213. Planck, Max. 1915c. Die Quantenhypothese für Molekeln mit mehreren Freiheitsgraden (Zweite Mitteilung). Verhandlungen der Deutschen Physikalischen Gesellschaft 17: 438–451. Reprinted in Planck (1958, vol. II, 362–375).Google Scholar
  214. Planck, Max. 1916. Die physikalische Struktur des Phasenräumes. Annalen der Physik 50: 385–418. Reprinted in Planck (1958, vol. II, 386–419).Google Scholar
  215. Planck, Max. 1917a. Über einen Satz der statischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsberichte, Preussische Akademie der Wissenschaft (Berlin): 324–341. Reprinted in Planck (1958, vol. II, 435–452).Google Scholar
  216. Planck, Max. 1917b. Zur Theorie des Rotationsspektrums 1. Mitt. and 2. Mitt. Annalen der Physik 52: 491–505 and 53: 241–256. Reprinted in Planck (1958, vol. II, 458–488).Google Scholar
  217. Planck, Max. 1958. Physikalische Abhandlungen und Vorträge. 3 vols. Braunschwieg/Wiesbaden: Vieweg.Google Scholar
  218. Planck, Max. 2008. Max Planck: annalen papers. ed. Dieter Hoffmann. Weinheim: Wiley-VCH.Google Scholar
  219. Rademacher Hans, Reiche Fritz (1926) Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik II. Intensitätsfragen. Zeitschrift für Physik 41: 453–492Google Scholar
  220. Randall, H.M., and E.S. Imes. 1920. The fine-structure of the near infrared absorption of the gases HCl, HBr, and HF. Physical Review 15: 152–155.Google Scholar
  221. Randall H.M. (1923) Infra-red spectra. Proceedings. American Philosophical Society 62: 326–340Google Scholar
  222. Randall H.M. (1923) Report on the fine structure of near infrared absorption bands. Journal of the Optical Society of America 7: 45–57Google Scholar
  223. Randall H.M. (1954) Infrared spectroscopy at the University of Michigan. Journal of the Optical Society of America 44: 94–103Google Scholar
  224. Rayleigh Lord. (1892) On the interference bands of approximately homogeneous light: in a letter to Prof. A. Michelson. Philosophical Magazine 34: 407–411Google Scholar
  225. Reiche Fritz. (1917) Zur Quantentheorie des Paramagnetismus. Annalen der Physik 54: 401–436Google Scholar
  226. Reiche Fritz. (1919) Zur Quantentheorie der Rotationswärme des Wasserstoffs. Annalen der Physik 58: 657–694Google Scholar
  227. Reiche Fritz. (1920) Zur Theorie der Rotationsspektren. Zeitschrift für Physik 1: 283–293Google Scholar
  228. Reiche, Fritz. 1921. Die Quantentheorie. Berlin: Springer. English translation in Fritz Reiche, The quantum theory (New York: E. P. Dutton and Company, 1921). Page references are to the translation.Google Scholar
  229. Reiche Fritz. (1926) Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik. Zeitschrift für Physik 39: 444–464Google Scholar
  230. Reif F. (1965) Fundamentals of statistical and thermal physics. McGraw-Hill, New YorkGoogle Scholar
  231. Renn, Jürgen. 2005. Einstein’s invention of Brownian Motion. In Einstein’s Annalen Papers, ed. Jürgen Renn, 23–37. Weinheim: Wiley-VCH.Google Scholar
  232. Richardson Owen W. (1934) Molecular hydrogen and its spectrum. Yale University Press, New HavenGoogle Scholar
  233. Rigden, John S. 1990. Dennison, David Mathias. In Holmes (1990, vol. 17, 220–222).Google Scholar
  234. Robertson, Peter. 1979. The early years: The Niels Bohr Institute 1921–1930. Copenhagen: Akademiske Forlag.Google Scholar
  235. Rotszajn Sophie. (1918) Die Anwendung der Planckschen Erweiterung der Quantenhypothese auf rotierende Gebilde mit zwei Freiheitsgraden in einem Richtungsfelde. Annalen der Physik 57: 81–123Google Scholar
  236. Ruark, Arthur Edward, and Harold Clayton Urey. 1930. Atoms, molecules and quanta. New York: McGraw-Hill.Google Scholar
  237. Schäfer K. (1973). Ernst Bartholomé zum 65. Geburtstag. Berichte der Bunsengesellschaft für physikalische Chemie 77: 742–743.Google Scholar
  238. Scheel Karl, Wilhelm Heuse. (1912) Die Spezifische Wärme der Luft bei Zimmertemperature und bei tiefen Temperaturen. Annalen der Physik 37: 79–95Google Scholar
  239. Scheel Karl, Wilhelm Heuse. (1913) Die spezifische Wärme von Helium und einigen zwieatomigen Gasen. Annalen der Physik 40: 473–492Google Scholar
  240. Schleich K. (1964) Klaus Clusius. Helvetica Chimica Acta 47: 234–246Google Scholar
  241. Schrödinger, Erwin. 1917. Die Ergebnisse der neueren Forschung über Atom- und Molekularwärmen. Die Naturwissenschaften 34: 532–543 and 35: 561–567. Reprinted in Schrödinger (1984, vol. 1, 174–187).Google Scholar
  242. Schrödinger, Erwin. 1919. Die Energieinhalt der Festkörper im Lichte der neueren Forschung. Physikalische Zeitschrift 20: 420–428; 450–455; 474–480; 497–503; 523–526. Reprinted in Schrödinger (1984, vol. 1, 277–307).Google Scholar
  243. Schrödinger, Erwin. 1924. Über die Rotationswärme des Wasserstoffs. Zeitschrift für Physik 30: 341–349. Reprinted in Schrödinger (1984, vol. 1, 332–340).Google Scholar
  244. Schrödinger, Erwin. 1925. Spezifische Wärme (theoretische Teil). In H. Geiger and Karl Scheel, editors, Handbuch der Physik, vol. X, 275–320. Berlin: Springer. Reprinted in Schrödinger (1984, vol. 1, 366–411).Google Scholar
  245. Schrödinger, Erwin. 1926a. Quantisierung als Eigenwertproblem (Zweite Mitteilung). Annalen der Physik 79: 489–527. Reprinted in Schrödinger (1984, vol. 3, 98–136). English translation in Erwin Schrödinger, Collected Papers on Wave Mechanics, 13–40. London: Blackie, 1928. Page references are to the translation.Google Scholar
  246. Schrödinger E. (1926) An undulatory theory of the mechanics of atoms and molecules. Physical Review 28: 1049–1070Google Scholar
  247. Schrödinger Erwin. (1984) Collected Papers/Gesammelte Abhandlungen 4 vols. Vieweg, Braunschweig/WiesbadenGoogle Scholar
  248. Schwarzschild, Karl. 1916. Zur Quantenhypothese. Sitzungsberichte, Preussische Akademie der Wissenschaft (Berlin): 548–568.Google Scholar
  249. Shore Steven N. (2003) Macrocosmos/microcosmos: celestial mechanics and the old quantum theory. Historia Mathematica 30: 494–513zbMATHMathSciNetGoogle Scholar
  250. Slater John C. (1926) Alternating intensities in band lines. Nature 117: 555–556Google Scholar
  251. Small, Henry Gilbert. 1971. The helium atom in the old quantum theory. Ph.D. dissertation, University of Wisconsin.Google Scholar
  252. Smekal Adolf. (1918) Zur sogenannten I. Planckschen Quantentheorie (Zur Quantentheorie des Paramagnetismus). Annalen der Physik 57: 376–400Google Scholar
  253. Smekal, Adolph. 1926. Allgemeine Grundlagen der Quantenstatistik und Quantentheorie. In Encyclopädie der Mathematischen Wissenschaften vol. 5, 3:2, 861–1214.Google Scholar
  254. Sommerfeld, Arnold. 1922. Atombau und Spektrallinien (3rd ed.). Braunschwieg/Wiesbaden: Vieweg. English translation in Arnold Sommerfeld. 1923. Atomic structure and spectral lines. New York: E. P. Dutton and Company.Google Scholar
  255. Sommerfeld Arnold. (1924) Atombau und Spektrallinien (4th eds). Vieweg, Braunschwieg/WiesbadenGoogle Scholar
  256. Sommerfeld Arnold. (1950) Lectures on theoretical physics, vol I, Mechanics. Academic Press, New YorkGoogle Scholar
  257. Sopka Katherine Russell. (1988) Quantum physics in America. American Institute of Physics, Los Angeles, Tomash and New YorkGoogle Scholar
  258. Stuewer Roger H. (1986) The naming of the deuteron. American Journal of Physics 54: 206–218Google Scholar
  259. Symon Keith R. (1960) Mechanics. Addison-Wesley, New YorkGoogle Scholar
  260. Tabor D. (1991) Gases, liquids, and solids (3rd ed). Cambridge University Press, Cambridge and New YorkGoogle Scholar
  261. Tolman Richard C. (1923) Rotational Specific Heat and Half Quantum Numbers. Physical Review 22: 470–478Google Scholar
  262. Tolman Richard C. (1927) Statistical mechanics with applications to physics and chemistry. American Chemical Society, New YorkzbMATHGoogle Scholar
  263. Tousey R. (1962) The extreme ultraviolet—past and future. Applied Optics 1: 679–694Google Scholar
  264. Tomonaga Sin-Itiro. (1997) The story of spin. University of Chicago Press, ChicagoGoogle Scholar
  265. Trautz Max, Konrad Hebbel. (1924) Die Messung der spezifischen Wärme C v von Gasen mittels der Differentialmethode. II. Mitteilung. Annalen der Physik 74: 285–324Google Scholar
  266. Uffink Jos. (2006) Insuperable difficulties: Einstein’s statistical road to molecular physics. Studies in History and Philosophy of Modern Physics 37: 36–70MathSciNetGoogle Scholar
  267. Urey Harold C., Brickwedde F.G., Murphy G.M. (1932) A hydrogen isotope of mass 2. Physical Review 39: 164–165Google Scholar
  268. Urey H.C., Teal G.K. (1935) The hydrogen isotope of atomic weight two. Reviews of Modern Physics 7: 34–94Google Scholar
  269. Van Vleck J.H. (1924) The specific heat of an exact gyroscopic model of the hydrogen molecule. Physical Review 23: 308Google Scholar
  270. Van Vleck, J.H. 1926a. Quantum principles and line spectra. Washington, D.C.: National Research Council. (Bulletin of the National Research Council 10, No. 54.)Google Scholar
  271. Van Vleck J.H. (1926) On the quantum theory of the specific heat of hydrogen. Part I. Relation to the new mechanics, band spectra, and chemical constants. Physical Review 28: 980–1021Google Scholar
  272. Van Vleck J.H. (1926) Notes on the postulates of the matrix quantum dynamics. Proceedings of the National Academy of Sciences 12: 385–388zbMATHGoogle Scholar
  273. Van Vleck J.H. (1929) The new quantum mechanics. Chemical Reviews 5: 467–507Google Scholar
  274. Van Vleck John. (1932) The theory of electric and magnetic susceptibilities. Oxford University Press, New YorkzbMATHGoogle Scholar
  275. Van Vleck J.H. (1964) American physics comes of age. Physics Today 17: 21–26Google Scholar
  276. Walker Mark. (1989) German national socialism and the quest for nuclear power. Cambridge University Press, New YorkGoogle Scholar
  277. Weyssenhoff Jan von. (1916) Die Anwendung der Quantentheorie auf rotierende Gebilde und die Theorie des Paramagnetismus. Annalen der Physik 51: 285–326Google Scholar
  278. Wennerholm Stefan. (2009) On the outskirts of physics: Eva von Bahr as an outsider within in early 20th century Swedish experimental physics. Centaurus 51: 12–36Google Scholar
  279. Werner Sven. (1926) Hydrogen bands in the ultra-violet Lyman region. Proceedings of the Royal Society of London A 113: 107–117Google Scholar
  280. Wigner, E., and E.E. Witmer. 1928. Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik. Zeitschrift für Physik 51: 859–886. English translation in Hettema (2000, 287–311).Google Scholar
  281. Witmer Enos E. (1926a) Critical potentials and the heat of dissociation of hydrogen as determined from its ultra-violet band spectrum. Proceedings of the National Academy of Sciences 12: 238–244Google Scholar
  282. Witmer Enos E. (1926b) Critical potentials and the heat of dissociation of hydrogen as determined from its ultra-violet band spectrum. Physical Review 28: 1223–1241Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of PhysicsSt. John’s UniversityCollegevilleUSA

Personalised recommendations