Advertisement

Archive for History of Exact Sciences

, Volume 63, Issue 5, pp 553–580 | Cite as

Reading Gauss in the Computer Age: On the U.S. Reception of Gauss’s Number Theoretical Work (1938–1989)

  • Maarten Bullynck
Article

Abstract

C.F Gauss’s computational work in number theory attracted renewed interest in the twentieth century due to, on the one hand, the edition of Gauss’s Werke, and, on the other hand, the birth of the digital electronic computer. The involvement of the U.S. American mathematicians Derrick Henry Lehmer and Daniel Shanks with Gauss’s work is analysed, especially their continuation of work on topics as arccotangents, factors of n 2 + a 2, composition of binary quadratic forms. In general, this strand in Gauss’s reception is part of a more general phenomenon, i.e. the influence of the computer on mathematics and one of its effects, the reappraisal of mathematical exploration.

Keywords

Quadratic Form Number Theory Class Group Class Number Derrick 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibald, Raymond Clare. 1948. Mathematical table makers. Portraits, paintings, busts, monuments, bio-bibliographical notes. Scripta Mathematica Studies 3.Google Scholar
  2. Baker Alan. (1966) Linear forms in the logarithms of algebraic numbers. Mathematika 13: 204–216CrossRefGoogle Scholar
  3. Brandt Heinrich. (1919) Komposition der binären quadratischen Formen relativ einer Grundform. Journal für die reine und angewandte Mathematik 150: 1–46Google Scholar
  4. Bullynck Maarten. (2009a) Decimal Periods and their tables: A German research topic (1765–1801). Historia Mathematica 36(2): 137–160zbMATHCrossRefMathSciNetGoogle Scholar
  5. Bullynck, Maarten. 2009b. A history of factor tables with notes on the birth of number theory 1668–1817. Revue d’histoire des mathématiques, 68 p (accepted for publication).Google Scholar
  6. Burckhardt, Johann Karl. 1814. Table des diviseurs pour tous les nombres du deuxiéme million, ou plus exactement depuis 1020000 á 2028000, avec les nombres premiers qui s’y trouvent. Paris: Courcier.Google Scholar
  7. Butts, Hubert S., Gordon Pall. (1968) Modules and binary quadratic forms. Acta Arithmetica 15: 23–44zbMATHMathSciNetGoogle Scholar
  8. Chowla, S.D., John Todd. (1949) The density of reducible integers. Canadian Journal of Mathematics 1: 297–299zbMATHGoogle Scholar
  9. Clippinger, R.F. 1948. A logical coding system applied to the ENIAC. BRL 673, Ballistic Research Laboratories, Aberdeen Proving Ground.Google Scholar
  10. Corry Leo. (2008) Number crunching vs. number theory: Computers and FLT, from Kummer to SWAC (1850–1960), and beyond. Archive for the History of Exact Sciences 62(4): 393–455zbMATHCrossRefMathSciNetGoogle Scholar
  11. Cunningham A.J.C., Woodall H.J. (1925) Factorisation of y n ±1, y = 2, 3, 4, 5, 6, 7, 10, 11, 12 up to high powers (n). Hodgson, LondonGoogle Scholar
  12. Dickson, Leonard L. (1919–1927), History of the theory of numbers, vol. 3. Washington: Carnegie Institute.Google Scholar
  13. Edwards, Harold M. (1980) The genesis of Ideal Theory. Archive for the History of Exact Sciences 23(4): 21–378CrossRefGoogle Scholar
  14. Fenster, Della. 2007. Gauss goes west: The reception of the Disquisitiones Arithmeticae in the USA. In: The shaping of arithmetic after C.F. Gauss’s Disquisitiones Arithmeticae, ed. by Catherine Goldstein, Norbert Schappacher, and Joachim Schwermer, 463–479. Berlin: Springer.Google Scholar
  15. Fenster, Della, and Joachim Schwermer. 2007. Composition of quadratic forms: An algebraic Perspective. In: The shaping of arithmetic after C.F. Gauss’s Disquisitiones Arithmeticae, ed. by Catherine Goldstein, Norbert Schappacher, and Joachim Schwermer, 145–158. Berlin: Springer.Google Scholar
  16. Forsythe, George E. (1951) Gauss to Gerling on relaxation (Translation). Mathematical Tables and Other Aids to Computation 5(36): 255–258Google Scholar
  17. Forsythe, George E., Motzkin, Theodore S. (1952) An extension of Gauss’s transformation for improving the condition of systems of linear equations. Mathematical Tables and Other Aids to Computation 6(37): 9–17zbMATHCrossRefMathSciNetGoogle Scholar
  18. Gauss, Carl Friedrich. 1801. Disquisitiones Arithmeticae. Leipzig: Fleischer. Reprint Bruxelles: Culture et Civilisation, 1968. Also C.F. Gauss, Werke, vol. I.Google Scholar
  19. Gauss, Carl Friedrich. 1863–1929. Werke. Göttingen: Gesellschaft der Wissenschaften Göttingen. Reprint Hildesheim, New York: Olms, 1973.Google Scholar
  20. Gauss, Carl Friedrich. 1965. Disquisitiones Arithmeticae. New Haven (trans: Clarke, A.A.). London: Yale University Press.Google Scholar
  21. Glaisher J.W.L. (1878) On factor tables, with an account of the mode of formation of the factor table for the fourth million. Proceedings of the Cambridge Philosophical Society 3: 9–138Google Scholar
  22. Goldstein, Catherine, and Norbert Schappacher. 2007. Several Disciplines and a Book (1860–1901). In: The shaping of arithmetic after C.F. Gauss’s Disquisitiones Arithmeticae, ed. by Catherine Goldstein, Norbert Schappacher, and Joachim Schwermer, 67–104. Berlin: Springer.Google Scholar
  23. Goldstine, Herman H., Goldstine Adèle. (1946) The Electronic Numerical Integrator and Computer (ENIAC). Mathematical Tables and Other Aids to Computation 2(15): 97–110zbMATHCrossRefMathSciNetGoogle Scholar
  24. Gruenberger, Fred. (1952) Further statistics on the digits of e. Mathematical Tables and Other Aids to Computation 6(38): 123–124Google Scholar
  25. Heegner Kurt. (1952) Diophantische Analysis und Modulfunktionen. Mathematische Zeitschrift 56: 227–253zbMATHCrossRefMathSciNetGoogle Scholar
  26. Heidemann M.T., Johnson D.H., Burrus C.S. (1985) Gauss and the history of the fast Fourier transform. Archive for the History of Exact Sciences 34(3): 265–277CrossRefGoogle Scholar
  27. Hindenburg, Carl Friedrich. 1776. Beschreibung einer ganz neuen Art, nach einem bekannten Gesetze fortgehende Zahlen, durch Abzählen oder Abmessen bequem und sicher zu finden, nebst Anwendung der Methode auf verschiedene Zahlen, besonders auf eine darnach zu fertigende Factorentafel, mit eingestreuten, die Zahlenberechnung überhaupt betreffenden Anmerkungen. Leipzig: Crusius.Google Scholar
  28. Hoffleit Doris. (1949) A comparison of various computing machines used in the reduction of Doppler observations. Mathematical Tables and Other Aids to Computation 3(25): 373–377CrossRefGoogle Scholar
  29. Hurwitz, Adolf. 1898. Ueber die Composition der quadratischen Formen von beliebig vielen Variabeln. Göttinger Nachrichten: 309–316.Google Scholar
  30. Hurwitz Adolf. (1923) Ueber die Komposition der quadratischen Formen. Mathematische Annalen 88: 1–25CrossRefMathSciNetGoogle Scholar
  31. Johnston S., Miller J.C.P. (1946) Tables of TAN −1(m/n). Mathematical Tables and Other Aids to Computation 2(15): 147–148Google Scholar
  32. Kaplansky Irving. (1968) Composition of binary quadratic forms. Studia Mathematica 31: 523–530zbMATHMathSciNetGoogle Scholar
  33. Knuth Donald E. (1969) The art of computer programing, vol. 2: Seminumerical algorithms (3rd Ed., 1997). Addison-Wesley, New YorkGoogle Scholar
  34. Kraïtchik Maurice. (1922) Théorie des Nombres. Gauthier-Villars, PariszbMATHGoogle Scholar
  35. Kronecker, Leopold. 1870. Auseinandersetzung einiger Eigenschaften der Klassenanzahl idealer komplexer Zahlen. Monatsberichte der Berliner Akademie, 881–889.Google Scholar
  36. Kummer, Edouard E. 1860. Gedächtnissrede auf Gustav Peter Lejeune-Dirichlet. In: G. Lejeune Dirichlet’s Werke, ed. by Leopold Kronecker and Lazarus Fuchs, vol. 2, 309–343. Berlin: Georg Reimer.Google Scholar
  37. Legendre Adrien-Marie. (1798) Essai sur la Théorie des nombres (2nd revised Ed. 1808, 3rd revised Ed. 1830). Courcier, ParisGoogle Scholar
  38. Lehmer Derrick Henry. (1928) The mechanical combination of linear forms. American Mathematical Monthly 35(3): 114–121zbMATHCrossRefMathSciNetGoogle Scholar
  39. Lehmer Derrick Henry. (1933a) A machine for combining sets of linear congruences. Mathematische Annalen 109: 661–667CrossRefMathSciNetGoogle Scholar
  40. Lehmer Derrick Henry. (1933b) A photo-electric number sieve. American Mathematical Monthly 40(7): 401–406CrossRefMathSciNetGoogle Scholar
  41. Lehmer Derrick Henry. (1938) On Arccotangent relations for π. American Mathematical Monthly 45(10): 657–664CrossRefMathSciNetGoogle Scholar
  42. Lehmer, Derrick Henry. 1941. Guide to tables in the theory of numbers. No. 105 in Bulletin of the National Research Council. Washington, D. C.: National Research Council, Committee on Mathematical Tables and Aids to Computation, Report 1: Report of the Subcommittee on Section F: Theory of Numbers.Google Scholar
  43. Lehmer Derrick Henry. (1948) The lemniscate constant. Mathematical Tables and Other Aids to Computation 3(23): 550–551Google Scholar
  44. Lehmer, Derrick Henry. 1950 J. Todd, “A problem on arctangent relations” (Review). Mathematical Tables and Other Aids to Computation 4 (30):85.Google Scholar
  45. Lehmer Derrick Henry. (1953) The sieve problem for all-purpose computers. Mathematical Tables and Other Aids to Computation 7(41): 6–14zbMATHCrossRefMathSciNetGoogle Scholar
  46. Lehmer Derrick Henry. (1966) Mechanized mathematics. Bulletin of the American Mathematical Society 72: 739–750zbMATHCrossRefMathSciNetGoogle Scholar
  47. Lehmer, Derrick Henry. 1969. Interview with Derrick H. Lehmer, 8 October 1969, interviewed by Uta Merzbach. Interview transcript, Computer Oral History Collection, 1969–1973, Archives Center, National Museum of American History.Google Scholar
  48. Lehmer, Derrick Henry. 1973. Interview with Derrick H. Lehmer, 18 April 1973, interviewed by Robina Mapstone. Interview transcript, Computer Oral History Collection, 1969–1973, Archives Center, National Museum of American History.Google Scholar
  49. Lehmer, Derrick Henry, Lehmer Emma. (1974) A new factorization technique using quadratic forms. Mathematics of Computation 28(126): 625–635zbMATHCrossRefMathSciNetGoogle Scholar
  50. Lehmer, Derrick Henry, Lehmer, Emma, Shanks Daniel. (1970) Integer Sequence having prescribed quadratic character. Mathematics of Computation 24(110): 433–451zbMATHCrossRefMathSciNetGoogle Scholar
  51. Lehmer, Derrick Henry, Powers, Richard E. (1931) On factoring large numbers. Bulletin of the American Mathematical Society 37: 770–776CrossRefMathSciNetGoogle Scholar
  52. Lehmer Derrick Norman. (1926) On the construction of factor stencils. Bulletin of the American Mathematical Society 32(2): 149–150zbMATHCrossRefMathSciNetGoogle Scholar
  53. Lehmer Derrick Norman. (1927) A theorem on factorization. Bulletin of the American Mathematical Society 33(1): 35–36zbMATHCrossRefMathSciNetGoogle Scholar
  54. Lehmer Derrick Norman. (1929) An announcement regarding factor stencils. Bulletin of the American Mathematical Society 35(5): 684–686zbMATHCrossRefMathSciNetGoogle Scholar
  55. Lejeune-Dirichlet, Peter-Gustav. 1854. De formarum binarum secundi gradus compositione. Journal für die reine und angewandte Mathematik 47:155–160. French translation in Journal des mathématiques pures et appliquées 2 (1859):389–398.Google Scholar
  56. Lejeune-Dirichlet, Peter-Gustav. 1863–1894. Vorlesungen über Zahlentheorie, ed. by Richard Dedekind. Braunschweig: Vieweg. 1. Auflage 1863, 2. Auflage 1871, 3. Auflage 1879, 4. Auflage 1894.Google Scholar
  57. Lemmermeyer, Franz. 2007. The development of the principal genus theorem, Peter-Gustav. In: The shaping of arithmetic after C.F. Gauss’s Disquisitiones Arithmeticae, ed. by Catherine Goldstein, Norbert Schappacher, and Joachim Schwermer, 529–562. Berlin: Springer.Google Scholar
  58. Maennchen, Paul. 1918. Gauss als Zahlenrechner. In: C.F. Gauss Werke, vol. X/2 (Ergänzungsband), Göttingen.Google Scholar
  59. Marquis, Jean-Pierre. 2006. A path to the eistemology of mathematics: Homotopy theory. In: The architecture of modern mathematics. Essays in History and Philosophy, ed. by José Ferreiros and Jeremy J. Gray, 239–260. Oxford: Oxford University Press.Google Scholar
  60. Metropolis Nicholas, Reitwiesner G.W., John von Neumann. (1950) Statistical treatment of values of first 2,000 decimal digits of e and of π calculated on the ENIAC. Mathematical Tables and Other Aids to Computation 4(30): 109–111CrossRefMathSciNetGoogle Scholar
  61. Miller J.C.P. (1946) Tables of TAN −1(m/n). Mathematical Tables and Other Aids to Computation 2(13): 62–63Google Scholar
  62. De Mol, Liesbeth, and Maarten Bullynck. 2008. A week-end off. The first extensive number-theoretical computation on the ENIAC. In: Computability in Europe 2008 logic and theory of algorithms logic and theory of algorithms, fourth conference on computability in Europe, CiE 2008, Athens, Greece, June 2008, Proceedings, vol. 5028 of Lecture Notes in Computer Science, ed. by Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, 158–167.Google Scholar
  63. Morrison, Michael A., John, Brillhart, (1975) A method of factoring and the factorization of F7. Mathematics of Computation 29(129): 183–205zbMATHCrossRefMathSciNetGoogle Scholar
  64. Neild, Carol, and Daniel, Shanks. 1974. On the 3-rank of quadratic fields and the Euler product. Mathematics of Computation 28 (125):279–291.zbMATHCrossRefMathSciNetGoogle Scholar
  65. von Neumann, John. 1951. Various techniques used in connection with random digits, Monte Carlo Method, National Bureau of Standards. Applied Mathematics Series 12:36–38. Also in Collected Works, vol. 5:768–770. New York: Pergamon Press, 1963.Google Scholar
  66. Pall Gordon. (1936) Note on irregular determinants. Journal of the London Mathematical Society 11: 34–35zbMATHCrossRefGoogle Scholar
  67. Pall Gordon. (1973) Some aspects of Gaussian composition. Acta Arithmetica 24: 401–409zbMATHMathSciNetGoogle Scholar
  68. Parshall, Karen H., and David E. Rowe. 1994. The emergence of the American mathematical research community, 1876–1900: J. J. Sylvester, Felix Klein, and E. H. Moore. Providence: American Mathematical Society.Google Scholar
  69. Pfister, Albrecht. 1990. Quadratische Formen. In: Ein Jahrhundert Mathematik 1890–1990. Festschrift zum Jubiläum der DMV, vol. 6 of Dokumente zur Geschichte der Mathematik, 657–671. Braunschweig: Vieweg.Google Scholar
  70. Polachek H. (1995) History of the journal Mathematical tables and other aids to computation, 1959–1965. Annals of the History of Computing IEEE 17(3): 67–74zbMATHCrossRefMathSciNetGoogle Scholar
  71. Putnam T.M. (1939) Derrick Norman Lehmer—In Memoriam. Bulletin of the American Mathematical Society 45(3): 209–212zbMATHCrossRefMathSciNetGoogle Scholar
  72. Reitwiesner G.W. (1950) An ENIAC determination of π and e to more than 2000 decimal places. Mathematical Tables and Other Aids to Computation 4(29): 11–15CrossRefMathSciNetGoogle Scholar
  73. Sarton George. (1956) Raymond Clare Archibald. Osiris 12: 4–34CrossRefMathSciNetGoogle Scholar
  74. Schering, Ernst C.J. (1869) Fuendamentalklassen der zusammensetzbaren arithmetischen Formen. Abhandlungen der Königlichen Akademie der Wissenschaften zu Göttingen 14: 3–16Google Scholar
  75. Schmitz M. (2004) The life of Gotthold Ferdinand Eisenstein. Res. Lett. Inf. Math. Sci. 6: 1–13Google Scholar
  76. Shanks Daniel. (1959) A sieve method for factoring numbers of the form n 2 + 1. Mathematical Tables and Other Aids to Computation 13(66): 78–86zbMATHCrossRefMathSciNetGoogle Scholar
  77. Shanks Daniel. (1960) On the conjecture of Hardy and Littlewood concerning the number of primes of the form n 2 + a. Mathematics of Computation 14(72): 321–332zbMATHCrossRefGoogle Scholar
  78. Shanks Daniel. (1963) Supplementary data and remarks concerning a Hardy-Littlewood conjecture. Mathematics of Computation 17(82): 188–193zbMATHCrossRefMathSciNetGoogle Scholar
  79. Shanks Daniel. (1969a) Class number of primes of the form 4n +1 by K.E. Kloss, M. Newman, E. Ordman (Review). Mathematics of Computation 23(105): 213–214CrossRefMathSciNetGoogle Scholar
  80. Shanks Daniel. (1969b) On Gauss’s class number problems. Mathematics of Computation 23(105): 151–163zbMATHCrossRefMathSciNetGoogle Scholar
  81. Shanks, Daniel. 1971a. Class number, a theory of factorization, and genera. In: Proceedings of the 1969 summer institute on number theory, ed. by D. Lewis, vol. 20 of Symposia in Pure Mathematics, 415–440. Providence: American Mathematical Society.Google Scholar
  82. Shanks, Daniel. 1971b. Gauss’s ternary form reduction and the 2-sylow subgroup. Mathematics of Computation 25 (116):837–853, corrigenda in MoC, Oct. 1978, 32 (144):1328–1329.Google Scholar
  83. Shanks, Daniel. 1972a. Five number-theoretic algorithms. In: Proceedings of the second Manitoba conference on numerical mathematics, ed. by R. Thomas and H.C. Williams, vol. 7 of Congressus Numerantium, 51–72. Winnipeg: Utilitas Mathematica.Google Scholar
  84. Shanks, Daniel. 1972b. The infrastructure of a real quadratic field and its applications. In: Proceedings of the Number Theory Conference, 217–224. Univ. Colorado, Boulder, Colo., 1972.Google Scholar
  85. Shanks Daniel. (1972c) New types of quadratic fields having three invariants divisible by 3. Journal of Number Theory 4: 537–556zbMATHCrossRefMathSciNetGoogle Scholar
  86. Shanks, Daniel. 1975a. Analysis and improvement of the continued fraction method of factorization. web.usna.navy.mil/~wdj/mcmath/. Unpublished manuscript, typed into latex by Stephen McMath, March 2004.
  87. Shanks, Daniel. 1975b. SQUFOF notes. web.usna.navy.mil/~wdj/mcmath/. Unpublished manuscript, typed into latex by Stephen McMath, March 2004.
  88. Shanks, Daniel. 1976. Class groups of the quadratic fields found by F. Diaz y Diaz. Mathematics of Computation 30 (133):173–178, corrigenda in MoC 30 (136):900.Google Scholar
  89. Shanks, Daniel. 1989. On Gauss and composition. I & II. In: Number theory and applications, ed. by I. Mollin, 163–184. Dordrecht: Kluwer Academic Publishers.Google Scholar
  90. Shanks, Daniel. 1993. Solved and unsolved problems in number theory. New York: Chelsea. (1st ed., Spartan Books, Washington, DC, 1962).Google Scholar
  91. Shanks, Daniel, and Richard Serafin. 1973. Quadratic fields with four invariants divisible by 3. Mathematics of Computation 27 (121):183–187, corrigenda in MoC 27, 1012.Google Scholar
  92. Shanks Daniel, Peter Weinberger. (1972) A quadratic field of prime discriminant requiring three generators for its class group, and related theory. Acta Arithmetica 21: 71–87zbMATHMathSciNetGoogle Scholar
  93. Shanks Daniel, John W. Wrench. (1962) Calculation of π to 100,000 decimals. Mathematics of Computation 16(77): 76–99zbMATHCrossRefMathSciNetGoogle Scholar
  94. Shanks Daniel, John W. Wrench. (1963) The calculation of certain Dirichlet series. Mathematics of Computation 17(82): 136–154zbMATHCrossRefMathSciNetGoogle Scholar
  95. Stark, Harold M. (1966) On complex quadratic fields with class-number equal to one. Transactions of the American Mathematical Society 122: 112–119zbMATHCrossRefMathSciNetGoogle Scholar
  96. Todd John. (1947) Tables of TAN −1(m/n). Mathematical Tables and Other Aids to Computation 2(18): 287–288Google Scholar
  97. Todd John. (1949) A problem on arc tangent relations. American Mathematical Monthly 56(8): 517–528zbMATHCrossRefMathSciNetGoogle Scholar
  98. Todd John. (1975a) The lemniscate constants. Communications of the ACM 18(1): 14–19zbMATHCrossRefMathSciNetGoogle Scholar
  99. Todd John. (1975b) Numerical analysis at the National Bureau of Standards. SIAM Review 17(2): 361–370zbMATHCrossRefMathSciNetGoogle Scholar
  100. Williams, Hank C. (1997) Daniel Shanks (1917–1996). Mathematics of Computation 66(219): 929–934zbMATHCrossRefMathSciNetGoogle Scholar
  101. Wrench, John W. (1938) On the derivation of arctangent equalities. American Mathematical Monthly 45(2): 108–109zbMATHCrossRefMathSciNetGoogle Scholar
  102. Wrench, John W. (1947) A new approximation to π. Mathematical Tables and Other Aids to Computation 2(18): 245–248CrossRefMathSciNetGoogle Scholar
  103. Wrench, John W. 1948. C.F. Gauss Werke v.3 1866 “De curva lemniscata”, 413–432 (Errata). Mathematical Tables and Other Aids to Computation 3 (23):201–203.Google Scholar
  104. Wrench, John W. 1950. C.F. Gauss, Tafel zur Verwandlung gemeiner Brüche mit Nennern aus dem ersten Tausend in Decimalbrüche, Werke 2, 412–434 (Errata). Mathematical Tables and Other Aids to Computation 4 (32):222–223.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.IZWT, Bergische Universität WuppertalWuppertalGermany
  2. 2.GentBelgium

Personalised recommendations