Advertisement

Archive for History of Exact Sciences

, Volume 63, Issue 5, pp 497–536 | Cite as

The Early Development of the Algebraic Theory of Semigroups

  • Christopher Hollings
Article

Abstract

In the history of mathematics, the algebraic theory of semigroups is a relative new-comer, with the theory proper developing only in the second half of the twentieth century. Before this, however, much groundwork was laid by researchers arriving at the study of semigroups from the directions of both group and ring theory. In this paper, we will trace some major strands in the early development of the algebraic theory of semigroups. We will begin with the aspects of the theory which were directly inspired by, and were analogous to, existing results for both groups and rings, before moving on to consider the first independent theorems on semigroups: theorems with no group or ring analogues.

Keywords

Inverse Semigroup Regular Semigroup Semigroup Forum Algebraic Theory Semigroup Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, A.A. 1939. Structure of algebras. American Mathematical Society Colloquium Publications, Vol. XXVI, American Mathematical Society.Google Scholar
  2. Arnold I. (1929) Ideale in kommutativen Halbgruppen. Matematicheskii Sbornik 36: 401–408zbMATHGoogle Scholar
  3. Baer R., Levi F. (1932) Vollständige irreduzibele Systeme von Gruppenaxiomen. Sitzungsberichte der Heidelberger Akademie der Wissenschaften 2: 1–12Google Scholar
  4. Bell E.T. (1930) Unique decomposition. American Mathematical Monthly 37: 400–418zbMATHMathSciNetCrossRefGoogle Scholar
  5. Bell E.T. (1933) Finite ova. Proceedings of the National Academy of Sciences USA 19: 577–579CrossRefGoogle Scholar
  6. Birkhoff G. (1934) Hausdorff groupoids. Annals of Mathematics (2) 35: 351–360MathSciNetCrossRefGoogle Scholar
  7. Birkhoff G. (1935) On the structure of abstract algebras. Proceedings of the Cambridge Philosophical Society 31: 433–454CrossRefGoogle Scholar
  8. Birkhoff G. (1973) Current trends in algebra. American Mathematical Monthly 80: 760–782zbMATHMathSciNetCrossRefGoogle Scholar
  9. Borůvka, O. 1941. Über Ketten von Faktoroiden. Mathematische Annalen 118:41–64. (Zbl 0024.29901)Google Scholar
  10. Bourbaki N. (1943) Éléments de Mathématique, Algèbre. Hermann, ParisGoogle Scholar
  11. Bourbaki, N. 1974. Elements of mathematics, algebra I. Addison-Wesley.Google Scholar
  12. Brandt H. (1913) Zur Komposition der quaternären quadratischen Formen. Journal für die reine und angewandte Mathematik 143: 106–129Google Scholar
  13. Brandt H. (1924) Der Kompositionsbergriff bei den quaternären quadratischen Formen. Mathematische Annalen 91: 300–315zbMATHMathSciNetCrossRefGoogle Scholar
  14. Brandt H. (1925) Über die Komponierbarkeit quaternärer quadratischer Formen. Mathematische Annalen 94: 179–197zbMATHMathSciNetCrossRefGoogle Scholar
  15. Brandt H. (1926a) Über das assoziative Gesetz bei der Komposition der quaternären quadratischen Formen. Mathematische Annalen 96: 353–359zbMATHMathSciNetCrossRefGoogle Scholar
  16. Brandt H. (1926b) Über eine Verallgemeinerung des Gruppenbegriffes. Mathematische Annalen 96: 360–366MathSciNetCrossRefGoogle Scholar
  17. Brandt H. (1928a) Idealtheorie in Quaternionenalgebren. Mathematische Annalen 99: 1–29zbMATHMathSciNetCrossRefGoogle Scholar
  18. Brandt H. (1928b) Idealtheorie in einer Dedekindsche Algebra. Jahresbericht der Deutschen Mathematiker-Vereinigung 37: 5–7zbMATHGoogle Scholar
  19. Brandt H. (1940) Über die Axiome des Gruppoids. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 85: 95–104MathSciNetGoogle Scholar
  20. Brown R. (1987) From groups to groupoids: a brief survey. Bulletin of the London Mathematical Society 19: 113–134zbMATHMathSciNetCrossRefGoogle Scholar
  21. Brown R. (1999) Groupoids and crossed objects in algebraic topology. Homology, Homotopy and Applications 1: 1–78zbMATHMathSciNetGoogle Scholar
  22. Bruck, R.H. 1966. A survey of binary systems. Springer-Verlag.Google Scholar
  23. Bush G.C. (1963) The embedding theorems of Malcev and Lambek. Canadian Journal of Mathematics 15: 49–58zbMATHMathSciNetGoogle Scholar
  24. Butts H.S., Pall G. (1968) Modules and binary quadratic forms. Acta Arithmetica 15: 23–44zbMATHMathSciNetGoogle Scholar
  25. Cameron, P.J. 1998. Introduction to algebra. Oxford University Press.Google Scholar
  26. Church A. (1938) Additions and corrections to a bibliography of symbolic logic. The Journal of Symbolic Logic 3(4): 178–192CrossRefGoogle Scholar
  27. Clifford, A.H. 1933a. Arithmetic and ideal theory of abstract multiplication. Ph.D. thesis, California Institute of Technology.Google Scholar
  28. Clifford A.H. (1933b) A system arising from a weakened set of group postulates. Annals of Mathematics (2) 34: 865–871MathSciNetCrossRefGoogle Scholar
  29. Clifford A.H. (1934) Arithmetic and ideal theory of abstract multiplication. Bulletin of the American Mathematical Society 40: 326–330MathSciNetCrossRefGoogle Scholar
  30. Clifford A.H. (1938) Arithmetic and ideal theory of commutative semigroups. Annals of Mathematics (2) 39: 594–610MathSciNetCrossRefGoogle Scholar
  31. Clifford A.H. (1941) Semigroups admitting relative inverses. Annals of Mathematics (2) 42: 1037–1049MathSciNetCrossRefGoogle Scholar
  32. Clifford A.H. (1942) Matrix representations of completely simple semigroups. American Journal of Mathematics 64: 327–342zbMATHMathSciNetCrossRefGoogle Scholar
  33. Clifford A.H. (1948) Semigroups containing minimal ideals. American Journal of Mathematics 70: 521–526zbMATHMathSciNetCrossRefGoogle Scholar
  34. Clifford A.H. (1949) Semigroups without nilpotent ideals. American Journal of Mathematics 71: 834–844MathSciNetCrossRefGoogle Scholar
  35. Clifford A.H. (1950) Extensions of semigroups. Transactions of the American Mathematical Society 68: 165–173zbMATHMathSciNetCrossRefGoogle Scholar
  36. Clifford A.H. (1972) The structure of orthodox unions of groups. Semigroup Forum 3: 283–337zbMATHMathSciNetCrossRefGoogle Scholar
  37. Clifford, A.H., and G.B. Preston. 1961. The algebraic theory of semigroups. Mathematical Surveys, No. 7, Vol. 1. American Mathematical Society, Providence, RI.Google Scholar
  38. Clifford, A.H., and G.B. Preston. 1967. The algebraic theory of semigroups. Mathematical Surveys No. 7, Vol. 2. American Mathematical Society, Providence, RI.Google Scholar
  39. Cohn, P.M. 1977. Algebra, Vol. 2. Wiley.Google Scholar
  40. Corfield D. (2001) The importance of mathematical conceptualisation. Studies in History and Philosophy of Science 32: 507–533MathSciNetCrossRefGoogle Scholar
  41. Cripps A.B. (1982) A comparison of some generalizations of Green’s relations. Semigroup Forum 24: 1–10zbMATHMathSciNetCrossRefGoogle Scholar
  42. de Séguier J.-A. (1904) Théorie des Groupes Finis: Éléments de la Théorie des Groupes Abstraits. Gauthier-Villars, ParisGoogle Scholar
  43. Dickson L.E. (1904) De Séguier’s theory of abstract groups. Bulletin of the American Mathematical Society 11: 159–162MathSciNetCrossRefGoogle Scholar
  44. Dickson L.E. (1905a) Definitions of a group and a field by independent postulates. Transactions of the American Mathematical Society 6: 198–204MathSciNetCrossRefGoogle Scholar
  45. Dickson L.E. (1905b) On semi-groups and the general isomorphism between infinite groups. Transactions of the American Mathematical Society 6: 205–208MathSciNetCrossRefGoogle Scholar
  46. Dixon J.D. (1963) General group extensions. Pacific Journal of Mathematics 13(1): 73–77zbMATHMathSciNetGoogle Scholar
  47. Dubreil P. (1941) Contribution à la théorie des demi-groupes. Mémoires de l’Académie des Sciences de l’Institut de France (2) 63: 52MathSciNetGoogle Scholar
  48. Dubreil P. (1943) Sur les problèmes d’immersion et la théorie des modules. Comptes Rendus de l’Académie des Sciences de Paris 216: 625–627zbMATHMathSciNetGoogle Scholar
  49. Dubreil P. (1954) Algèbre, tome I: Equivalences, Opérations, Groupes, Anneaux, Corps, 2d ed. Gauthier-Villars, ParisGoogle Scholar
  50. Dubreil P. (1981) Apparition et premiers développements de la théorie des demi-groupes en France. Cahiers du sé mainaire d’histoire des mathématiques 2: 59–65MathSciNetGoogle Scholar
  51. Ehresmann Ch. (1965) Catégories et Structures. Dunod, PariszbMATHGoogle Scholar
  52. Eilenberg S., Mac Lane S. (1945) The general theory of natural equivalences. Transactions of the American Mathematical Society 58: 231–294zbMATHMathSciNetCrossRefGoogle Scholar
  53. Fountain J. (1977) Right PP monoids with central idempotents. Semigroup Forum 13: 229–237zbMATHMathSciNetCrossRefGoogle Scholar
  54. Fritzsche, R., and H.-J. Hoehnke. 1986. Heinrich Brandt: 1886–1986. Wissenschaftliche Beiträge 47, Halle: Martin-Luther-Universität Halle-Wittenberg, 79 pp.Google Scholar
  55. Frobenius, F.G. 1895. Über endliche Gruppen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin 81–112.Google Scholar
  56. Frobenius, G., and I. Schur. 1906. Über die Äquivalenz der Gruppen linearer Substitutionen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin 209–217.Google Scholar
  57. Gauss, C.F. 1801. Disquisitiones arithmeticae. Leipzig.Google Scholar
  58. Gluskin, L.M. 1968. The theory of semigroups. Istoriya Otetschestvennoy Matematiki, Kiev 3:321–332 (Russian).Google Scholar
  59. Gluskin L.M., Lyapin E.S. (1959) Anton Kazimirovič Suškevič(on his seventieth birthday). Uspekhi Matematicheskikh Nauk 14: 255–260 (Russian)zbMATHMathSciNetGoogle Scholar
  60. Gluskin L.M., Schein B.M. (1972) The theory of operations as the general theory of groups (Anton Suškevič, dissertation, Voronezh, 1922): an historical review. Semigroup Forum 4: 367–371zbMATHMathSciNetCrossRefGoogle Scholar
  61. Goodearl K.R. (1981) Von Neumann regular rings: connections with functional analysis. Bulletin of the American Mathematical Society (N. S.) 4(2): 125–134zbMATHMathSciNetCrossRefGoogle Scholar
  62. Green J.A. (1951) On the structure of semigroups. Annals of Mathematics (2) 54: 163–172CrossRefGoogle Scholar
  63. Grošek O., Satko L., Schein B. (1994) Eightieth birthday of Professor Štefan Schwarz. Semigroup Forum 49: 1–5zbMATHCrossRefGoogle Scholar
  64. Hall T.E. (1970) On orthodox semigroups and uniform and anti-uniform bands. Journal of Algebra 16: 204–217zbMATHMathSciNetCrossRefGoogle Scholar
  65. Hausmann B.A., Ore O. (1937) Theory of quasi-groups. American Journal of Mathematics 59(4): 983–1004MathSciNetCrossRefGoogle Scholar
  66. Higgins, P.J. 1971. Notes on Categories and Groupoids. Van Nostrand Reinhold Co.Google Scholar
  67. Hilton H. (1908) An introduction to the theory of groups of finite order. Clarendon Press, OxfordzbMATHGoogle Scholar
  68. Hofmann K.H. (1976) Topological semigroups: History, theory, applications. Jahresbericht der Deutschen Mathematiker-Vereinigung 78: 9–59zbMATHMathSciNetGoogle Scholar
  69. Hofmann K.H. (1992) Zur Geschichte des Halbgruppenbegriffs. Historia Mathematica 19: 40–59zbMATHMathSciNetCrossRefGoogle Scholar
  70. Hofmann K.H. (1995) From a topological theory of semigroups to a geometric one. Semigroup Forum 50: 123–134zbMATHMathSciNetCrossRefGoogle Scholar
  71. Hofmann K.H. (2000) A history of topological and analytical semigroups: A personal view. Semigroup Forum 61: 1–25zbMATHMathSciNetCrossRefGoogle Scholar
  72. Hollings C. (2006) The history of the 2-, 4- and 8-square identities. BSHM Bulletin: Journal of the British Society for the History of Mathematics 21(2): 111–118zbMATHMathSciNetCrossRefGoogle Scholar
  73. Hollings C. (2007a) Conditions for the prefix expansion of a monoid to be (weakly) left ample. Acta Scientiarum Mathematicarum (Szeged) 73(3–4): 519–545zbMATHMathSciNetGoogle Scholar
  74. Hollings C. (2007b) Some first tantalizing steps into semigroup theory. Mathematics Magazine 80(5): 331–344zbMATHMathSciNetGoogle Scholar
  75. Hollings, C. to appear. Anton Kazimirovich Suschkewitsch (1889–1961). BSHM Bulletin: Journal of the British Society for the History of Mathematics.Google Scholar
  76. Howie, J.M. 1995. Fundamentals of semigroup theory. LMS Monographs, New Series, No. 12, Oxford: Clarendon Press.Google Scholar
  77. Howie, J.M. 2002. Semigroups, past, present and future. In: Proceedings of the International Conference on Algebra and its Applications, pp. 6–20.Google Scholar
  78. Huntington, E.V. 1901–1902. Simplified definition of a group. Bulletin of the American Mathematical Society 8:296–300.Google Scholar
  79. Jacobson, N. 1951. Lectures in abstract algebra, Vol. 1: Basic concepts. Princeton, NJ: D. Van Nostrand Co. Inc.Google Scholar
  80. Jakubík, J., and M. Kolibiar. 1974. Sixtieth anniversary of the birthday of Academician Štefan Schwarz. Czechoslovak Mathematical Journal 24(99), no. 2, 331–340.Google Scholar
  81. Karpilovsky, G. 2001. Block. In Encyclopaedia of Mathematics, ed. M. Hazewinkel. Kluwer Academic Publishers.Google Scholar
  82. Kerber, A. 1971. Representations of permutation groups I. Lecture Notes in Mathematics, no. 240. Springer-Verlag.Google Scholar
  83. Klein, F. 1979. Development of Mathematics in the 19th Century. Lie Groups: History, Frontiers and Applications, IX, Math Sci Press, Brookline, Mass. (with preface and appendices by Robert Hermann; translation by M. Ackerman).Google Scholar
  84. Kleiner I. (1986) The evolution of group theory: A brief survey. Mathematics Magazine 59: 195–215zbMATHMathSciNetCrossRefGoogle Scholar
  85. Kleiner I. (1996) The genesis of the abstract ring concept. American Mathematical Monthly 103: 417–424zbMATHMathSciNetCrossRefGoogle Scholar
  86. Knauer U. (1980) Zur Entwicklung der algebraischen Theorie der Halbgruppen. Simon Stevin 54: 165–177zbMATHMathSciNetGoogle Scholar
  87. Kneser M. (1982) Composition of binary quadratic forms. Journal of Number Theory 15: 406–413zbMATHMathSciNetCrossRefGoogle Scholar
  88. Kneser M., Knus M.-A., Ojanguren M., Parimala R., Sridharan R. (1986) Composition of quaternary quadratic forms. Compositio Mathematica 60(2): 133–150zbMATHMathSciNetGoogle Scholar
  89. Küng G. (1962) Bibliography of Soviet work in the field of mathematical logic and the foundations of mathematics, from 1917–1957. Notre Dame Journal of Formal Logic 3(1): 1–40zbMATHMathSciNetCrossRefGoogle Scholar
  90. Lallement G.J. (1995) Paul Dubreil (1904–1994) in memoriam. Semigroup Forum 50: 1–7zbMATHMathSciNetCrossRefGoogle Scholar
  91. Lambek J. (1951) The immersibility of a semigroup in a group. Canadian Journal of Mathematics 3: 34–43zbMATHMathSciNetGoogle Scholar
  92. Lawson J.D. (1992) Historical links to a Lie theory of semigroups. Seminar Sophie Lie 2: 263–278zbMATHMathSciNetGoogle Scholar
  93. Lawson J.D. (1996) The earliest semigroup paper?. Semigroup Forum 52: 55–60zbMATHMathSciNetCrossRefGoogle Scholar
  94. Lawson J.D. (2002) An interview with Karl H. Hofmann on the occasion of his seventieth birthday. Semigroup Forum 65: 317–328zbMATHMathSciNetCrossRefGoogle Scholar
  95. Lawson, M.V. 1998. Inverse semigroups: The theory of partial symmetries. World Scientific.Google Scholar
  96. Loewy A. (1927) Über abstrakt definierte Transmutationssysteme oder Mischgruppen. Journal für die reine und angewandte Mathematik 157: 239–254zbMATHCrossRefGoogle Scholar
  97. Lyapin, E.S. 1960. Semigroups. Moscow (Russian).Google Scholar
  98. Lyapin E.S. (1963) Semigroups. American Mathematical Society, Providence, RIzbMATHGoogle Scholar
  99. Lyubich, Yu. I., and E. M. Zhmud’. 1989. Anton Kazimirovich Suschkewitsch. Kharkov State Univeristy Newspaper, April (Russian).Google Scholar
  100. Malcev A.I. (1937) On the immersion of an algebraic ring into a field. Mathematische Annalen 113: 686–691MathSciNetCrossRefGoogle Scholar
  101. Malcev A.I. (1939) On the immersion of associative systems in groups. Matematicheskii Sbornik (N. S.) 6: 331–336 (Russian)MathSciNetGoogle Scholar
  102. Malcev A.I. (1940) On the immersion of associative systems in groups. Matematicheskii Sbornik (N. S.) 8: 251–264 (Russian)MathSciNetGoogle Scholar
  103. Malcev A.I. (1971) On the history of algebra in the USSR during her first twenty-five years. Algebra and Logic 10(1): 68–75CrossRefGoogle Scholar
  104. Márki L., Steinfeld O. (1974) A generalization of Green’s relations in semigroups. Semigroup Forum 7: 74–85zbMATHMathSciNetCrossRefGoogle Scholar
  105. Meakin, J. 1985. The Rees construction in regular semigroups. In Semigroups (Szeged, 1981), Colloquia Mathematica Societatis János Bolyai, 39, 115–155. North-Holland: Amsterdam.Google Scholar
  106. Miller D.D. (1974) A. H. Clifford: The first sixty-five years. Semigroup Forum 7: 4–9zbMATHMathSciNetCrossRefGoogle Scholar
  107. Miller, D.D. 1996. Reminiscences of a friendship. In Semigroup theory and its applications: Proceedings of the 1994 conference commemorating the work of Alfred H. Clifford. LMS Lecture Note Series, No. 231, 1–2. Cambridge University Press.Google Scholar
  108. Moore E.H. (1902) A definition of abstract groups. Transactions of the American Mathematical Society 3: 485–492zbMATHMathSciNetCrossRefGoogle Scholar
  109. Mulcrone T.F. (1962) Semigroup examples in introductory modern algebra. American Mathematical Monthly 69: 296–301MathSciNetCrossRefGoogle Scholar
  110. Munn W.D. (1957) Matrix representations of semigroups. Proceedings of the Cambridge Philosophical Society 53: 5–12zbMATHCrossRefGoogle Scholar
  111. Munn, W.D. 2008. Private communication, 23rd June.Google Scholar
  112. Murray F.J., von Neumann J. (1936) On rings of operators. Annals of Mathematics 37: 116–229MathSciNetCrossRefGoogle Scholar
  113. Neumann P.M. (1999) What groups were: a study of the development of the axiomatics of group theory. Bulletin of the Australian Mathematical Society 60: 285–301zbMATHMathSciNetCrossRefGoogle Scholar
  114. Noether E. (1927) Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörper. Mathematische Annalen 96: 26–61MathSciNetCrossRefGoogle Scholar
  115. Pastijn F. (1975) A representation of a semigroup by a semigroup of matrices over a group with zero. Semigroup Forum 10: 238–249zbMATHMathSciNetCrossRefGoogle Scholar
  116. Peirce B. (1881) Linear associative algebra. American Journal of Mathematics 4: 97–229MathSciNetCrossRefGoogle Scholar
  117. Petrich M. (1970) Bibliographical comment. Semigroup Forum 1: 184MathSciNetCrossRefGoogle Scholar
  118. Petrich M. (1973) Introduction to semigroups. Merrill, Columbus: OhiozbMATHGoogle Scholar
  119. Pflugfelder H.O. (2000) Historical notes on loop theory. Commentationes Mathematicae Universitatis Carolinae 41(2): 359–370zbMATHMathSciNetGoogle Scholar
  120. Poole A.R. (1937) Finite ova. American Journal of Mathematics 59: 23–32MathSciNetCrossRefGoogle Scholar
  121. Preston G.B. (1954a) Inverse semi-groups. Journal of the London Mathematical Society 29: 396–403zbMATHMathSciNetCrossRefGoogle Scholar
  122. Preston G.B. (1954b) Inverse semi-groups with minimal right ideals. Journal of the London Mathematical Society 29: 404–411zbMATHMathSciNetCrossRefGoogle Scholar
  123. Preston G.B. (1954c) Representations of inverse semi-groups. Journal of the London Mathematical Society 29: 411–419zbMATHMathSciNetCrossRefGoogle Scholar
  124. Preston G.B. (1974) A. H. Clifford: An appreciation of his work on the occasion of his sixty-fifth birthday. Semigroup Forum 7: 32–57zbMATHMathSciNetCrossRefGoogle Scholar
  125. Preston, G.B. 1991. Personal reminiscences of the early history of semigroups. In Monash Conference on Semigroup Theory, Melbourne 1990, 16–30. River Edge, NJ: World Scientific.Google Scholar
  126. Preston, G.B. 1996. A. H. Clifford’s work on unions of groups. In Semigroup theory and its applications: Proceedings of the 1994 conference commemorating the work of Alfred H. Clifford. LMS Lecture Note Series, No. 231, Cambridge University Press, pp. 5–14.Google Scholar
  127. Pták V. (1949) Immersibility of semigroups. Acta Fac. Nat. Univ. Carol. Prague 192: 16Google Scholar
  128. Rees D. (1940) On semi-groups. Proceedings of the Cambridge Philosophical Society 36: 387–400MathSciNetCrossRefGoogle Scholar
  129. Rees D. (1941) Note on semi-groups. Proceedings of the Cambridge Philosophical Society 37: 434–435MathSciNetCrossRefGoogle Scholar
  130. Rhodes, J. 1996. The relationship of Al Clifford’s work to the current theory of semigroups. In Semigroup theory and its applications: Proceedings of the 1994 conference commemorating the work of Alfred H. Clifford. LMS Lecture Note Series, No. 231, Cambridge University Press, pp. 43–51.Google Scholar
  131. Richardson, A.R. 1940. Algebra of s dimensions. Proceedings of the London Mathematical Society (2) 47:38–59. (Zbl 0025.24501).Google Scholar
  132. Schein B.M. (1981) Obituary: Victor Vladimirovich Vagner (1908–1981). Semigroup Forum 23: 189–200MathSciNetCrossRefGoogle Scholar
  133. Schein, B.M. 1986. Prehistory of the theory of inverse semigroups. In Proceedings of the 1986 LSU Semigroup Conference (Kochfest 60), 72–76. Baton Rouge, LA: Louisiana State University.Google Scholar
  134. Schein B.M. (1997) Book review: ‘Social Semigroups: A Unified Theory of Scaling and Blockmodelling as Applied to Social Networks’ by John Paul Boyd. Semigroup Forum 54: 264–268CrossRefGoogle Scholar
  135. Schein B.M. (2002) Book review: ‘Inverse Semigroups: The Theory of Partial Symmetries’ by Mark V. Lawson. Semigroup Forum 65: 149–158CrossRefGoogle Scholar
  136. Schein, B.M. 2008a. Private communication, 19th June.Google Scholar
  137. Schein, B.M. 2008b. Private communication, 16th July.Google Scholar
  138. Schmidt, O.Y. 1966. Abstract Theory of Groups (first published 1916). W. H. Freeman & Co. (Translation by F. Holling and J. B. Roberts).Google Scholar
  139. Schoenebeck, G. 2004. Binary quadratic forms: Correspondence and composition. Final project in introductory course on algebraic number theory, University of Washington, http://modular.math.washington.edu/129/projects/.
  140. Schwarz, Š. 1943. Teória pologrúp. Sborník Prác Prírodevedeckej Fakulty Slovenskej Univerzity v Bratislave. 6:1–64, (Slovak with German summary: Zur Theorie der Halbgruppen, Arb. Nat. Fak. Univ. Bratislava).Google Scholar
  141. Schwarz Š. (1951) On the structure of simple semigroups without zero. Czechoslovak Mathematical Journal 1(1): 41–53MathSciNetGoogle Scholar
  142. Skornjakov, L.A. 2001. Regular ring (in the sense of von Neumann). In Encyclopaedia of Mathematics, ed. M. Hazewinkel. Kluwer Academic Publishers.Google Scholar
  143. Specht W. (1933) Eine Verallgemeinerung der Permutationsgruppen. Mathematische Zeitschrift 37: 321–341MathSciNetCrossRefGoogle Scholar
  144. Stoll R.R. (1944) Representations of finite simple semigroups. Duke Mathematical Journal 11: 251–265zbMATHMathSciNetCrossRefGoogle Scholar
  145. Stolt B. (1958) Zur Axiomatik des Brandtschen Gruppoids. Mathematische Zeitschrift 70: 156–164zbMATHMathSciNetCrossRefGoogle Scholar
  146. Study, E. 1923. Invariantentheorie linearer Transformationen. Braunschweig.Google Scholar
  147. Suschkewitsch, A.K. 1922. The theory of operations as the general theory of groups. Dissertation, University of Voronezh (Russian).Google Scholar
  148. Suschkewitsch A.K. (1926) Über die Darstellung der eindeutig nicht umkehrbaren Gruppen mittels der verallgemeinerten Substitutionen. Matematicheskii Sbornik 33: 371–374zbMATHGoogle Scholar
  149. Suschkewitsch A.K. (1928) Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit. Mathematische Annalen 99: 30–50zbMATHMathSciNetCrossRefGoogle Scholar
  150. Suschkewitsch A.K. (1929) On a generalization of the associative law. Transactions of the American Mathematical Society 31: 204–214zbMATHMathSciNetCrossRefGoogle Scholar
  151. Suschkewitsch A.K. (1933) Über die Matrizendarstellung der verallgemeinerten Gruppen. Zap. Inst. Mat. Meh.(4)(Comm. Soc. Math. Kharkow) 6: 27–38Google Scholar
  152. Suschkewitsch A.K. (1935) Über die Erweiterung der Semigruppe bis zur ganzen Gruppe. Zap. Inst. Mat. Meh.(4)(Comm. Soc. Math. Kharkow) 12: 81–86 (Russian)Google Scholar
  153. Suschkewitsch A.K. (1936) Über eine Verallgemeinerung der Semi-gruppen. Zap. Inst. Mat. Meh.(4)(Comm. Soc. Math. Kharkow) 12: 89–98Google Scholar
  154. Suschkewitsch, A.K. 1937. The theory of generalised groups. DNTVU, Kharkov-Kiev (Russian).Google Scholar
  155. Suschkewitsch, A.K. 1940. Investigations on infinite substitutions. In Memorial volume dedicated to D. A. Grave, 245–253. Moscow (Russian).Google Scholar
  156. Suschkewitsch A.K. (1951) Materials for the history of algebra in Russia in the 19th and the beginning of the 20th centuries. Istoriko-Matematicheskie Issledovaniya 4: 237–451 (Russian)MathSciNetGoogle Scholar
  157. Suschkewitsch, A.K. 1956. Theory of numbers:Elementary course, 2d ed. Izdat. Har’kov. Gosudarstv. Univ. im. A.M. Gor’kogo, Kharkov (Russian).Google Scholar
  158. Tamari D. (1949) Les images homomorphes des groupoîdes de Brandt et l’immersion des semi-groupes. Comptes Rendus de l’Académie des Sciences de Paris 229: 1291–1293zbMATHMathSciNetGoogle Scholar
  159. Tamari, D. 1951. Monoïdes préordonnés et chaînes de Malcev. Thèse, Université de Paris.Google Scholar
  160. Tamari D. (1954) Monoïdes préordonnés et chaînes de Malcev. Bulletin de la Société Mathématique de France 82: 53–96zbMATHMathSciNetGoogle Scholar
  161. van der Waerden B.L. (1930) Modern algebra. Springer, BerlinGoogle Scholar
  162. von Neumann J. (1936) On regular rings. Proceedings of the National Academy of Sciences USA 22: 707–713CrossRefGoogle Scholar
  163. Wagner V.V. (1952) Generalised groups. Doklady Akademii Nauk SSSR 84: 1119–1122 (Russian)Google Scholar
  164. Wagner V.V. (1953) The theory of generalised heaps and generalised groups. Matematicheskii Sbornik (N. S.) 32: 545–632 (Russian)Google Scholar
  165. Wallace A.D. (1956) The Rees–Suschkewitsch structure theorem for compact simple semigroups. Proceedings of the National Academy of Sciences USA 42: 430–432zbMATHMathSciNetCrossRefGoogle Scholar
  166. Wallace A.D. (1963) Relative ideals in semigroups II:The relations of Green. Acta Mathematica Academiae Scientiarum Hungaricae 14: 137–148zbMATHMathSciNetCrossRefGoogle Scholar
  167. Ward M. (1928) Postulates for an abstract arithmetic. Proceedings of the National Academy of Sciences USA 14: 907–911zbMATHCrossRefGoogle Scholar
  168. Ward M. (1930) Postulates for the inverse operations in a group. Transactions of the American Mathematical Society 32: 520–526zbMATHMathSciNetCrossRefGoogle Scholar
  169. Ward M. (1935) Conditions for factorization in a set closed under a single operation. Annals of Mathematics (2) 36: 36–39CrossRefGoogle Scholar
  170. Weber H. (1882) Beweis des Satzes, dass jede eigentlich primitive quadratische Form unendlich viele Primzahlen darzustellen fähig ist. Mathematische Annalen 20: 301–329MathSciNetCrossRefGoogle Scholar
  171. Wedderburn J.H.M. (1907) On hypercomplex numbers. Proceedings of the London Mathematical Society 6(2): 77–118Google Scholar
  172. Wells C. (1976) Some applications of the wreath product construction. American Mathematical Monthly 83(5): 317–338zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Centro de Álgebra da Universidade de LisboaLisboaPortugal

Personalised recommendations