Advertisement

Archive for History of Exact Sciences

, Volume 62, Issue 5, pp 511–551 | Cite as

Euclid’s Pseudaria

  • Fabio AcerbiEmail author
Article

Keywords

Isosceles Triangle Geometrical Proof Latin Translation Geometrical Principle Bodleian Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anaritius’ Commentary on Euclid. The Latin Translation I-IV. Edited by P.M.J.E. Tummers. Artistarium Supplementa IX. Nijmegen, Ingenium Publishers 1994.Google Scholar
  2. Apollonii Pergaei quae graece exstant, cum commentariis antiquis, edidit et latine interpretatus est I.L. Heiberg. 2 vols. Leipzig, B.G. Teubner 1891–93 (reprint ed.: Stuttgart, B.G. Teubner 1974).Google Scholar
  3. Archimedes, Opera Omnia, cum Commentariis Eutocii, iterum edidit I.L. Heiberg. 3 vols. Leipzig, B.G. Teubner 1910–15 (reprint ed.: Stuttgart und Leipzig, B.G. Teubner 1972).Google Scholar
  4. Aristote 1967, Topiques. Tome I: Livres I-IV. Texte établi et traduit par J. Brunschwig. Paris, Les Belles Lettres.Google Scholar
  5. Aristoxeni Elementa Harmonica, R. Da Rios recensuit. Roma, Istituto Poligrafico dello Stato 1954.Google Scholar
  6. Busard H.L.L. (1984) The Latin translation of the Arabic version of Euclid’s Elements commonly ascribed to Gerard of Cremona. E.J. Brill, LeidenzbMATHGoogle Scholar
  7. Busard H.L.L. 1987, The Mediaeval Latin Translation of Euclid’s Elements made directly from the Greek. Boethius, Band 15. Stuttgart, Franz Steiner Verlag.Google Scholar
  8. Busard H.L.L. 2001, Johannes de Tinemue’s Redaction of Euclid’s Elements, the so-called Adelard III Version. Boethius, Band 45, 2 vols. Stuttgart, Franz Steiner Verlag.Google Scholar
  9. Busard H.L.L. 2005, Campanus of Novara and Euclid’s Elements. Boethius, Band 51, 2 vols. Stuttgart, Franz Steiner Verlag.Google Scholar
  10. Claudii Galeni Pergameni Open image in new window. I. Magnaldi recensuit. Romae, Typis officinae polygraphicae 1999.Google Scholar
  11. Commentaria in Aristotelem Graeca. 23 volumes in 51 fascicles, by several editors. Berlin (Academia litterarum regia borussica), G. Reimer 1883–1909 (reprint ed.: Berlin/New York, De Gruyter 1957).Google Scholar
  12. Codex Leidensis 399,1. Euclidis Elementa ex interpretatione al-Hadschdschadschii cum commentariis al-Narizii, partes I-II (libri I-III), arabice et latine ediderunt notisque instruxerunt R.O. Besthorn et J.L. Heiberg. Copenhagen, in Libraria Gyldendaliana 1893–1905; pars III (libri IV-VI), arabice et latine ediderunt notisque instruxerunt G. Junge, J. Raeder, W. Thomson, Copenhagen, in Libraria Gyldendaliana 1932 (reprint ed.: F. Sezgin (ed.), Islamic Mathematics and Astronomy, vols. 14 and 15, Frankfurt am Main, Institut für Geschichte der Arabisch-Islamischen Wissenschaften 1997).Google Scholar
  13. Ebbesen S. 1981, Commentators and Commentaries on Aristotle’s Sophistici Elenchi. Corpus Latinum Commentariorum in Aristotelem Graecorum VII.1–3. 3 vols. Leiden, Brill.Google Scholar
  14. Euclidis Phaenomena et Scripta Musica, edidit H. Menge. Fragmenta, collegit et disposuit I.L. Heiberg, vol. VIII in Euclidis Opera Omnia, ediderunt I.L. Heiberg et H. Menge. Leipzig, B.G. Teubner 1916.Google Scholar
  15. Heronis Alexandrini opera quae supersunt omnia. Volumen IV. Heronis Definitiones cum variis collectionibus. Heronis quae feruntur Geometrica. Edidit J. L. Heiberg. Leipzig, B.G. Teubner 1912 (reprint ed.: Stuttgart, B.G. Teubner 1976).Google Scholar
  16. Iamblichi De communi mathematica scientia liber, ad fidem codicis florentini edidit N. Festa. Leipzig, B.G. Teubner 1891 (reprint ed.: Stuttgart, B.G. Teubner 1975).Google Scholar
  17. Pappi Alexandrini Collectionis quae supersunt, e libris manu scriptis edidit latina interpretatione et commentariis instruxit F. Hultsch. 3 vols. Berlin, Weidmann 1876–78 (reprint ed.: Amsterdam, Hakkert 1965).Google Scholar
  18. Procli Diadochi In Primum Euclidis Elementorum Librum Commentarii, ex recognitione G. Friedlein. Leipzig, B.G. Teubner 1873 (reprint ed.: Hildesheim, Georg Olms Verlag 1992).Google Scholar
  19. Scholia in Aristotelem, edidit Ch. Brandis. Vol. IV in Aristotelis Opera, ex recensione I. Bekkeri editit Academia Regia Borussica. Editio altera quam curavit O. Gigon. Berlin, W. De Gruyter 1961.Google Scholar
  20. Scholia Platonica, by W.C. Greene. Monograph Series 8. Haverford, The American Philological Association 1938 (reprint eds.: Chico (CA), Scholars Press 1981 and Hildesheim, Georg Olms Verlag 1988).Google Scholar
  21. Scholia Graeca in Platonem, edidit D. Cufalo. Volumen I, scholia ad dialogos tetralogiarum I-VII continens. Roma, Edizioni di Storia e Letteratura 2007.Google Scholar
  22. Tarán L. (1981) Speusippus of Athens. A Critical Study with a Collection of the Related Texts and Commentary. E.J. Brill, LeidenGoogle Scholar

Secondary literature and translations

  1. Alexander of Aphrodisias 2001, On Aristotle Topics 1. Translated by J.M. Van Ophuijsen. London, Duckworth.Google Scholar
  2. Aristoteles Graecus. Die griechischen Manuskripte des Aristoteles I: Alexandrien-London. Untersucht und beschrieben von P. Moraux, D. Harlfinger, D. Reinisch, J. Wiesner. Berlin/New York, De Gruyter 1976.Google Scholar
  3. Atherton C. (1993), The Stoics on Ambiguity. Cambridge, Cambridge University PressGoogle Scholar
  4. Barnes J. 1990, Logical Form and Logical Matter, in A. Alberti (ed.), Logica, mente e persona. Accademia toscana di Scienze e Lettere «La Colombaria». «Studi» CX. Firenze, Leo S. Olschki, pp. 7–119.Google Scholar
  5. Bowen A.C. (1983), Menaechmus versus the Platonists: Two Theories of Science in the Early Academy. Ancient Philosophy 3, 12–29Google Scholar
  6. Burnyeat M.F. (2005), Archytas and Optics. Science in Context 18, 35–53CrossRefGoogle Scholar
  7. Cambiano G. 1988, La démonstration géométrique, in M. Détienne (ed.), Les savoirs de l’écriture en Grèce ancienne. Presses Universitaires de Lille, Cahiers de Philologie 14, pp. 251–272.Google Scholar
  8. Chantraine P. 1979. La formation des noms en grec ancien. Nouveau tirage. Paris, Klincksieck.Google Scholar
  9. Cufalo D. (2001), Note sulla tradizione degli scoli platonici. Studi classici e orientali 47, 529–568Google Scholar
  10. De Young G. (2004), The Latin Translation of Euclid’s Elements Attributed to Gerard of Cremona in Relation to the Arabic Transmission. Suhayl 4, 311–383zbMATHMathSciNetGoogle Scholar
  11. De Young G. (2005), Diagrams in the Arabic Euclidean tradition: a preliminary assessment. Historia Mathematica 32, 129–179zbMATHCrossRefMathSciNetGoogle Scholar
  12. Euclid 1926, The Thirteen Books of the Elements. Translated with introduction and commentary by Sir Thomas L. Heath. 3 vols. 2nd ed. Cambridge, Cambridge University Press (reprint ed.: New York, Dover 1956).Google Scholar
  13. Euclide, Les Éléments. Traduction et commentaires par Bernard Vitrac. 4 vols. Vol. 1. Introduction générale. Livres I à IV (1990); Vol. 3. Livre X (1998). Paris, Presses Universitaires de France.Google Scholar
  14. Fowler D.H. (1999), The Mathematics of Plato’s Academy 2nd ed. Oxford, Clarendon PresszbMATHGoogle Scholar
  15. Goulet R. et Aouad M. 1994, Alexandros D’Aphrodisias in R. Goulet (ed.), Dictionnaire des Philosophes Antiques, Paris, CNRS Editions, vol. 1, pp. 125–139.Google Scholar
  16. Heath T.L. 1921, A History of Greek Mathematics. 2 vols. Oxford, Oxford University Press (reprint ed.: New York, Dover 1981).Google Scholar
  17. Heath T.L. 1949, Mathematics in Aristotle. Oxford, Clarendon Press (reprint ed.: Bristol, Thoemmes Press 1998).Google Scholar
  18. Heiberg J.L. 1882, Litterargeschichtliche Studien über Euklid. Leipzig, B.G. Teubner.Google Scholar
  19. Knorr W.R. (1975), The Evolution of the Euclidean Elements. Dordrecht/Boston, D. ReidelzbMATHGoogle Scholar
  20. Lévy T. 1997a, Les \’Eléments d’Euclide en hébreu (XIII^e-XVI^e siècles), in A. Hasnawi, A. Elamrani-Jamal, M. Aouad (eds.), Perspectives arabes et médiévales sur la tradition scientifique et philosophique grecque. Leuven-Paris, Peeters, pp. 78–94.Google Scholar
  21. Lévy T. 1997b, Une version hébraïque inédite des \’Eléments d’Euclide, in D. Jacquart (ed.), Les voies de la science grecque. Études sur la transmission des textes de l’Antiquité au dix-neuvième siècle. Genève, Droz, pp. 181–239.Google Scholar
  22. Lévy T. (2000), Mathematics in the Midrash ha-Hokhmah of Judah ben Solomon ha-Cohen. In: Harvey S. (eds). The Medieval Hebrew Encyclopedia of Science and Philosophy. Dordrecht/Boston/London, Kluwer Academic Publishers, pp. 300–312Google Scholar
  23. Liddell H.G., Scott R., Jones H.S., A Greek-English Lexicon. With a revised supplement 1996. Oxford, Clarendon Press.Google Scholar
  24. Mansfeld J. (1983), Intuitionism and Formalism: Zeno’s Definition of Geometry in a Fragment of L. Calvenus Taurus. Phronesis 28, 59–74CrossRefGoogle Scholar
  25. Moraux P. 1979, Le commentaire d’Alexandre d’Aphrodise aux «“Seconds Analytiques”» d’Aristote. Peripatoi, Band 13. Berlin/New York, De Gruyter.Google Scholar
  26. Netz R. (1999), The Shaping of Deduction in Greek Mathematics. Cambridge, Cambridge University PresszbMATHGoogle Scholar
  27. Nikulin D. 2002, Matter, Imagination, and Geometry. Ontology, Natural Philosophy, and Mathematics in Plotinus, Proclus, and Descartes. Burlington (VT), Ashgate Publishing Company.Google Scholar
  28. Proclo 1978, Commento al primo libro degli Elementi di Euclide. Introduzione, traduzione e note di M.T. Cardini. Pisa, Giardini editori e stampatori.Google Scholar
  29. Proclus 1948, Les Commentaires sur le premier livre des Élements d’Euclide, traduits avec une introduction et des notes par P. Ver Eecke. Bruges, Desclée De Brouwer & Cie.Google Scholar
  30. Proclus 1970, A Commentary on the First Book of Euclid’s Elements, translated, with introduction and notes, by G.R. Morrow. Princeton, Princeton University Press.Google Scholar
  31. Saito K. 2006, A preliminary study in the critical assessment of diagrams in Greek mathematical works, SCIAMVS 7, pp. 81–144.Google Scholar
  32. Sidoli N. (2005), Heron’s Dioptra 35 and Analemma Methods: An Astronomical Determination of the Distance between Two Cities. Centaurus 47, 236–258zbMATHCrossRefMathSciNetGoogle Scholar
  33. Tannery P. 1882, Compte rendu de J.L. Heiberg, Litterargeschichtliche Studien über Euklid, Bulletin des Sciences mathématiques et astronomiques 2^e série, VI, pp. 145–152, reprinted in Id., Mémoires Scientifiques, publiés par J.L. Heiberg & H.G. Zeuthen. 17 tomes. Toulouse, Privat/Paris, Gauthier-Villars 1912–1950, tome XI (1931), édité avec la collaboration de J. Pérès, pp. 140–147.Google Scholar
  34. Tannery P. 1887, La géométrie grecque. Paris, Gauthier-Villars (reprint ed.: Paris, Editions Jacques Gabay 1988).Google Scholar
  35. Tarrant A. (1984), Zeno on Knowledge or on Geometry? The Evidence of anon. Theaetetum, Phronesis 29, 96–99CrossRefGoogle Scholar
  36. Vitrac B. (2004), A Propos des Démonstrations Alternatives et Autres Substitutions de Preuves Dans les \’Eléments d’Euclide. Archive for History of Exact Sciences 59, 1–44zbMATHCrossRefMathSciNetGoogle Scholar
  37. Vitrac B. (2005), Les Géomètres de la Grèce antique. Les génies de la science 21, 29–99Google Scholar
  38. Vlastos G. (1988), Elenchus and Mathematics: a Turning-Point in Plato’s Philosophical Development. American Journal of Philology 109, 362–396CrossRefGoogle Scholar
  39. Whittaker J. 1989, The Value of Indirect Tradition in the Establishment of Greek Philosophical Texts, or the Art of Misquotation, in J.N. Grant (ed.), Editing Greek and Latin Texts. Papers given at the Twenty-Third Annual Conference on Editorial Problems. University of Toronto 6–7 November 1987. New York, AMS Press, pp. 63–95.Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.CNRS, UMR 8163 «Savoirs, textes, langage»Villeneuve d’Ascq CedexFrance
  2. 2.Moggio Udinese (UD)Italy

Personalised recommendations