Advertisement

Archive for History of Exact Sciences

, Volume 60, Issue 1, pp 1–121 | Cite as

The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes

  • Philip EhrlichEmail author
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeles, F., 2001, ``The Enigma of the Infinitesimal: Toward Charles L. Dodgson's Theory of Infinitesimals,'' Modern Logic 8, pp. 7–19.Google Scholar
  2. 2.
    Alimov, N., 1950, ``On Ordered Semigroups,'' Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 14, pp. 569–576. (Russian)Google Scholar
  3. 3.
    Aguiló Fuster, R., 1963, ``Application of Dedekind's method to a non-Archimedean ordered field,'' Collectanea Mathematica 15, pp. 77–90. For English summary of Spanish text, see [Brainerd 1965].Google Scholar
  4. 4.
    Bachmann, H., 1967, Transfinite Zahlen, Springer-Verlag, Berlin.Google Scholar
  5. 5.
    Baer, R., 1929, ``Zur Topologie der Gruppen,'' Journal für die Reine und Angewandte Mathematik 160, pp. 208–226.Google Scholar
  6. 6.
    Baer, R., 1970, ``Dichte Archimedizität und Starrheit geordneter Körper,'' Mathematische Annalen 188, pp. 165–205.Google Scholar
  7. 7.
    Banaschewski, B., 1957, ``Über die Vervollständigung geordneter Gruppen,'' Mathematische Nachrichten 16, pp. 51–71.Google Scholar
  8. 8.
    Behrend, F., 1956, ``A Contribution to the Theory of Magnitudes and the Foundations of Analysis,'' Mathematische Zeitschrift 63, pp. 345–362.Google Scholar
  9. 9.
    Bettazzi, R., 1890, Teoria Delle Grandezze, Pisa.Google Scholar
  10. 10.
    Bettazzi, R., 1891, ``Osservazioni sopra l'articolo del Dr. G. Vivanti Sull'infinitesimo attuale,'' Rivista di Matematica 1, pp. 174–182.Google Scholar
  11. 11.
    Bettazzi, R., 1892, ``Sull'infinitesimo attuale,'' Rivista di Matematica 2, pp. 38–41.Google Scholar
  12. 12.
    Bettazzi, R., 1892a, ``Sui punti di discontinuità delle funzioni di variabile reale, Rendiconti del Circolo Matematico di Palermo 6, pp. 173–1895.Google Scholar
  13. 13.
    Bettazzi, R., 1893, Reprint of [Bettazzi 1890], Annali Della Università Toscane, Parte Seconda, Scienze Cosmologiche 19 (1893), pp.1–180.Google Scholar
  14. 14.
    Bettazzi, R., 1896, ``Gruppi finiti ed infiniti di enti,'' Atti della Reale Accademia delle Scienze di Torino, Classe di Scienze Fisiche, Matematiche, e Naturale 31, pp. 362–368.Google Scholar
  15. 15.
    Borel, E., 1898, Leçons sur la théorie des fonctions, Gauthier-Villars, Paris.Google Scholar
  16. 16.
    Borel, E., 1899, ``Mémoire sur les séries divergentes,'' Annales, École normale supérieur, 3e serie, t. 16, pp. 9–136.Google Scholar
  17. 17.
    Borel, E., 1902, Leçons sur les séries à termes positifs, Gauthier-Villars, Paris.Google Scholar
  18. 18.
    Borel, E., 1910, Leçons sur la théorie de la croissance, Gauthier-Villars, Paris.Google Scholar
  19. 19.
    Bos, H. J. M., 1974, ``Differentials, higher-order differentials and the derivative in the Leibnizian calculus,'' Archive for History of Exact Sciences XIV, pp. 1–90.Google Scholar
  20. 20.
    Bottazzini, U., 1986, The higher calculus: a history of real and complex analysis from Euler to Weierstrass; translated by Warren Van Egmond, Springer-Verlag, New York.Google Scholar
  21. 21.
    Boyer, C., 1949, The Concepts of the Calculus, A Critical and Historical Discussion of the Derivative and the Integral, Hafner Publishing Company, Inc., New York; reprinted as The Concepts of the Calculus and its Conceptual Development in 1959 by Dover Publications, Inc., New York.Google Scholar
  22. 22.
    Brainerd, B., 1965, Review of [Aguiló Fuster 1963], Mathematical Reviews 29, p. 895; #4758.Google Scholar
  23. 23.
    Brouwer, L. E. J., 1907 in 1975, On The Foundations Of Mathematics, in L. E. J. Brouwer Collected Works I: Philosophy and Foundations of Mathematics, Edited by A. Heyting, North-Holland Publishing Company, Amsterdam, 1975, pp.13–126. (Translation of: Over De Grondslagen Der Wiskunde, Maas & Van Suchtelen, Amsterdam, 1907.)Google Scholar
  24. 24.
    Cantor, G., 1872, ``Über die Ausdehnung eines Satzes der Theorie der trigonometrischen Reihen,'' Mathematische Annalen 5, pp. 122–132. Reprinted in [Cantor 1932, pp. 92–102].Google Scholar
  25. 25.
    Cantor, G., May 17, 1877, Letter from Cantor to Dedekind, in [Noether and Cavaillès 1937, pp. 22–23]. English translation in [Ewald 1996, pp. 851–852].Google Scholar
  26. 26.
    Cantor, G., June 20, 1877, Letter from Cantor to Dedekind, in [Noether and Cavaillès 1937, pp. 25–26]. English translation in [Ewald 1996, pp. 853–854].Google Scholar
  27. 27.
    Cantor, G., December 29, 1878, Letter from Cantor to Dedekind, in [Meschkowski and Nilson 1991, pp. 50–51].Google Scholar
  28. 28.
    Cantor, G., 1882, ``Über unendliche, lineare Punktmannigfaltigkeiten,'' Part 3, Mathematische Annalen 20, pp. 113–121. Reprinted in [Cantor 1932, pp. 149–157].Google Scholar
  29. 29.
    Cantor, G., 1883, Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen, Leipzig, B. G. Teubner. Reprinted in [Cantor 1932, pp. 165–208]. English translation by W. D. Ewald in [Ewald 1996, pp. 881–920].Google Scholar
  30. 30.
    Cantor, G., 1883a, ``Fondaments d'une théorie générale des ensembles,'' Acta Mathematica 2, pp. 381–408.Google Scholar
  31. 31.
    Cantor, G., February 10, 1883, Letter from Cantor to Mittag-Leffler, in [Meschkowski and Nilson 1991, pp. 114–115].Google Scholar
  32. 32.
    Cantor, G., March 3, 1883, Letter from Cantor to Mittag-Leffler, in [Meschkowski and Nilson 1991, pp. 117–118].Google Scholar
  33. 33.
    Cantor, G., 1884, Review of [Cohen 1883], Deutsche Literaturzeitung 5 (Berlin, Feb 23), pp. 266–268.Google Scholar
  34. 34.
    Cantor, G., December 27, 1884, Letter from Cantor to Lasswitz, in [Meschkowski and Nilson 1991, pp. 235–236].Google Scholar
  35. 35.
    Cantor, G., 1886, ``Über die verschiedenen Standpunkte in Bezug auf das Aktuelle Unendliche,'' Zeitschrift für Philosophie und philosophische Kritik 88, pp. 224–233. Reprinted in [Cantor 1932, pp. 370–376].Google Scholar
  36. 36.
    Cantor, G., 1887, ``Mitteilungen zur Lehre vom Transfiniten. I,''Zeitschrift für Philosophie und philosophische Kritik 91, pp. 81–125. Reprinted in [Cantor 1890] and [Cantor 1932, pp. 378–439].Google Scholar
  37. 37.
    Cantor, G., February 4, 1887, Letter from Cantor to Kerry, in [Meschkowski and Nilson 1991, pp. 275–276].Google Scholar
  38. 38.
    Cantor, G., March 6, 1887, Letter from Cantor to Eneström, in [Meschkowski and Nilson 1991, p. 278].Google Scholar
  39. 39.
    Cantor, G., March 18, 1887, Excerpt of letter from Cantor to Kerry, in [Meschkowski and Nilson 1991, p. 280].Google Scholar
  40. 40.
    Cantor, G., May 13, 1887, Letter from Cantor to Goldscheider, in [Meschkowski 1967, pp. 252–254].Google Scholar
  41. 41.
    Cantor, G., May 16, 1887, Letter from Cantor to Weierstrass, in [Meschkowski and Nilson 1991, p. 288].Google Scholar
  42. 42.
    Cantor, G., 1890, Zur Lehre vom Transfiniten, Halle, C. E. M. Pfeffer.Google Scholar
  43. 43.
    Cantor, G., September 7, 1890, Letter from Cantor to Veronese, in [Meschkowski and Nilson 1991, pp. 326–327].Google Scholar
  44. 44.
    Cantor, G., November 17, 1890, Letter from Cantor to Veronese, in [Meschkowski and Nilson 1991, p. 330].Google Scholar
  45. 45.
    Cantor, G., December 13, 1893, Letter from Cantor to Vivanti, in [Meschkowski 1965, pp. 504–508].Google Scholar
  46. 46.
    Cantor, G., 1895, ``Sui numeri transfiniti,'' Rivista di Matematica 5, pp. 104–109.Google Scholar
  47. 47.
    Cantor, G., 1895a, ``Beiträge zur Begründung der transfiniten Mengenlehre,'' Part I, Mathematische Annalen 46, pp. 481–512. Reprinted in [Cantor 1932, pp. 282–311]. English translation [Cantor 1915, pp. 85–136].Google Scholar
  48. 48.
    Cantor, G., April 5, 1895, Exerpt of Letter from Cantor to Killing, in [Meschkowski and Nilson 1991, p. 128]. For an English translation of the relevant passage, see [Dauben 1979, p. 351].Google Scholar
  49. 49.
    Cantor, G., July 27, 1895, Letter from Cantor to Peano, in [Meschkowski and Nilson 1991, pp. 359–360].Google Scholar
  50. 50.
    Cantor, G., 1897, ``Beiträge zur Begründung der transfiniten Mengenlehre,'' Part II, Mathematische Annalen 49, pp. 207–246. Reprinted in [Cantor 1932, pp. 312–351]. English translation [Cantor 1915, pp. 137–201].Google Scholar
  51. 51.
    Cantor, G., 1915, Contributions to the Founding of Transfinite Numbers, Translated, and Provided with an Introduction and Notes by Philip E. B. Jourdain. Reprinted by Dover Publications, Inc., New York, 1955.Google Scholar
  52. 52.
    Cantor, G., 1932, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Herausgegeben von Ernest Zermelo, nebst einem Lebenslauf Cantors von A. Fraenkel,J. Springer, Berlin; reprinted Hildesheim, Olms, 1966.Google Scholar
  53. 53.
    Cantor, G., 1996, ``Foundations of a General Theory of Manifolds: A Mathematico-Philosophical Investigation into the Theory of the Infinite.'' English translation of [Cantor 1883 in Ewald 1996, pp. 887–920].Google Scholar
  54. 54.
    Carruth, P., 1942, ``Arithmetic of Ordinals with Applications to the Theory of Ordered Abelian Groups,'' Bulletin of the American Mathematical Society 48, pp. 262–271.Google Scholar
  55. 55.
    Clifford, A. H., 1954a, ``Note on Hahn's theorem on ordered Abelian groups,'' Proceedings of the American Mathematical Society 5, pp. 860–863.Google Scholar
  56. 56.
    Clifford, A. H., 1954b, ``Naturally Totally Ordered Commutative Semigroups,'' American Journal of Mathematics 76, pp. 631–646.Google Scholar
  57. 57.
    Clifford, A. H., 1958, ``Totally Ordered Commutative Semigroups,'' Bulletin of the American Mathematical Society 64, pp. 305–316.Google Scholar
  58. 58.
    Clifford, A. H. and Preston, G. B., 1961, The Algebraic Theory of Semigroups, Volume 1, The Americam Mathematical Society, Providence, Rhode Island.Google Scholar
  59. 59.
    Cohen, H., 1883, Das Princip der Infinitesimalmethode und seine Geschichte, Berlin, F. Dümmler-Verlag.Google Scholar
  60. 60.
    Cohen, L. W. and Goffman, C., 1949, ``The Topology of Ordered Abelian Groups,'' Transactions of the Amererican Mathematical Society 67, pp. 310–319.Google Scholar
  61. 61.
    Cohen, L. W. and Goffman, C., 1950, ``On Completeness in the Sense of Archimedes,'' American Journal of Mathematics 72, pp. 747–751.Google Scholar
  62. 62.
    Conrad, P., 1954, ``On Ordered Division Rings,'' Proceedings of the American Mathematical Society 5, pp. 323–328.Google Scholar
  63. 63.
    Conway, J. H., 1976, On Numbers and Games, Academic Press, London.Google Scholar
  64. 64.
    Dales, H. and Wooden, W. H., 1996, Super-real Ordered Fields, Clarendon Press, Oxford.Google Scholar
  65. 65.
    Dauben, J., 1977, ``C. S. Peirce's Philosophy of Infinite Sets,'' Mathematics Magazine 50 (3), pp. 123–135.Google Scholar
  66. 66.
    Dauben, J., 1979, Georg Cantor His Mathematics and Philosophy of the Infinite, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  67. 67.
    Dauben, J., 1992, ``Appendix (1992): Revolutions Revisited,'' in Revolutions in Mathematics, edited by D. Gilles, Clarendon Press, Oxford, pp. 72–82.Google Scholar
  68. 68.
    Dauben, J., 1992a, ``Arguments, Logic and Proof: Mathematics, Logic and the Infinite,'' in History of Mathematics and Education: Ideas and Experience; Papers from the Conference held at the University of Essen, Essen, 1992, edited by Hans Niels Jahnke, Norbert Knoche and Micheal Otte, 1996, Vandenhoeck & Ruprecht, Göttingen.Google Scholar
  69. 69.
    Dauben, J., 1995, Abraham Robinson, The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey, Princeton University Press, Princeton, New Jersey.Google Scholar
  70. 70.
    Davis, P. and Hersh, R., 1972, ``Nonstandard Analysis,'' Scientific American, June, pp.78–84. Reprinted in The Mathematical Experience by P. Davis and R. Hersh, Birkhäuser, Boston, 1981, pp. 237–254.Google Scholar
  71. 71.
    Dedekind, R., 1872, Stetigkeit und irrationale Zahlen, Braunschweig, Vieweg. English translation by W. W. Beman (with corrections by W. Ewald) in [Ewald 1996, pp. 765–779].Google Scholar
  72. 72.
    Dedekind, R., May 18, 1877, Letter from Dedekind to Cantor, in [Noether and Cavaillès 1937, pp. 23–24]. English translation in [Ewald 1996, pp. 852–853].Google Scholar
  73. 73.
    Dedekind, R., 1888, Was sind und was sollen die Zahlen?, Braunschweig, Vieweg. English translation by W. W. Beman (with corrections by W. Ewald) in [Ewald 1996, pp. 790–833].Google Scholar
  74. 74.
    Dehn, M., 1900, ``Die Legendreschen Sätze über die Winkelsumme im Dreieck,'' Mathematische Annalen 53, pp. 404–439.Google Scholar
  75. 75.
    Dijksterhuis, E. J., 1987, Archimedes, With a New Bibliographic Essay by Wilbur R. Knorr, Princeton University Press, New Jersey.Google Scholar
  76. 76.
    Dodgson, C., 1888, Curiosa Mathematica, Part I, A New Theory of Parallels, Macmillan and Co., London. Third Edition 1890.Google Scholar
  77. 77.
    Du Bois-Reymond, P., 1870–71, ``Sur la grandeur relative des infinis des fonctions,'' Annali di matematica pura ed applicata 4, pp. 338–353.Google Scholar
  78. 78.
    Du Bois-Reymond, P., 1873, ``Eine neue Theorie der Convergenz und Divergenz von Reihen mit positiven Gliedern,'' Journal für die Reine und Angewandte Mathematik 76, pp. 61–91; (Anhang, Ueber die Tragweite der logarithmischen Criterien, pp. 88–91).Google Scholar
  79. 79.
    Du Bois-Reymond, P., 1875, ``Ueber asymptotische Werthe, infinitäre Approximationen und infinitäre Auflösung von Gleichungen,'' Mathematische Annalen 8, pp. 363–414; (Nachträge zur Abhandlung: ueber asymptotische Werthe etc., pp. 574–576).Google Scholar
  80. 80.
    Du Bois-Reymond, P., 1877, ``Ueber die Paradoxen des Infinitärcalcüls,'' Mathematische Annalen 11, pp. 149–167.Google Scholar
  81. 81.
    Du Bois-Reymond, P., 1882, Die allgemeine Functionentheorie I, Verlag der H. Laupp'schen Buchhandlung, Tübingen.Google Scholar
  82. 82.
    Edwards Jr., C. H., 1979, The Historical Development of the Calculus, Springer-Verlag, New York.Google Scholar
  83. 83.
    Ehrlich, P. (Editor), 1994, Real Numbers, Generalizations of the Reals, and Theories of Continua, Kluwer Academic Publishers. Dordrecht, Holland.Google Scholar
  84. 84.
    Ehrlich, P., 1994a, ``General Introduction,'' in [Ehrlich 1994, pp. vii–xxxii].Google Scholar
  85. 85.
    Ehrlich, P., 1994b, ``Editorial Notes to [Veronese 1994],'' in [Ehrlich 1994, pp. 182–187].Google Scholar
  86. 86.
    Ehrlich, P., 1995, ``Hahn's Über die nichtarchimedischen Grössensysteme and the Development of the Modern Theory of Magnitudes and Numbers to Measure Them,'' in From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics, edited by Jaakko Hintikka, Kluwer Academic Publishers, Dordrecht, Holland, pp. 165–213.Google Scholar
  87. 87.
    Ehrlich, P., 1997, ``Dedekind Cuts of Archimedean Complete Ordered Abelian Groups,'' Algebra Universalis 37, pp. 223–234.Google Scholar
  88. 88.
    Ehrlich, P., 1997a,``From Completeness to Archimedean Completeness: An Essay in the Foundations of Euclidean Geometry,'' in A Symposium on David Hilbert edited by Alfred Tauber and Akihiro Kanamori, Synthese 110, pp. 57–76.Google Scholar
  89. 89.
    Ehrlich, P., 2001, ``Number Systems with Simplicity Hierarchies: A Generalization of Conway's Theory of Surreal Numbers,'' The Journal of Symbolic Logic 66, pp. 1231–1258.Google Scholar
  90. 90.
    Enriques, F., 1907, ``Prinzipien der Geometrie,'' in Encyklopädie der Mathematischen Wissenschaften III, Erster Teil, Erste Hälfte: Geometrie, Verlag und Druck Von B. G. Teubner, Leipzig, 1907, pp. 1–129.Google Scholar
  91. 91.
    Enriques, F., 1911, ``Principes De La Géométrie,'' in Encyclopédie Des Sciences Mathématiques Pures Et Appliquées Tome III, Volume I: Fondements De La Géométrie, Gauthier-Villars, Paris, pp. 1–147. French translation with revisions of [Enriques 1907].Google Scholar
  92. 92.
    Enriques, F., 1911b, ``Sui numeri non archimedei e su alcune loro interpretazioni,'' Bollettino della Mathesis, Società Italiana di Matematica IIIa, pp. 87–105.Google Scholar
  93. 93.
    Enriques, F., 1912, ``I numeri reali,'' in Questioni Riguardanti Le Matematiche Elementari, Volume 1, edited by Federico Enriques, Nicola Zanichelli, Bologna, pp. 365–493. Second Edition 1924, pp. 231–389.Google Scholar
  94. 94.
    Ewald, W. B. (Editor), 1996, From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volume II, Clarendon Press, Oxford.Google Scholar
  95. 95.
    Fisher, G., 1981, ``The Infinite and Infinitesimal Quantities of du Bois-Reymond and their Reception,'' Archive for History of Exact Sciences 24, pp. 101–164.Google Scholar
  96. 96.
    Forder, H., 1927, The Foundations of Euclidean Geometry, Cambridge University Press, Cambridge. Reprinted by Dover Publications, New York, 1958.Google Scholar
  97. 97.
    Fraenkel, A. A., 1928, Einleitung In Die Mengenlehre, Dritte Umgearbeitete Und Stark Erweiterte Auflage,Verlag Von Julius Springer, Berlin.Google Scholar
  98. 98.
    Fraenkel, A. A., 1953, Abstract Set Theory, North-Holland Publishing Company, Amsterdam.Google Scholar
  99. 99.
    Fraenkel, A. A., 1976, Abstract Set Theory (Fourth Revised Edition), North-Holland Publishing Company, Amsterdam.Google Scholar
  100. 100.
    Fraenkel, A. A., Bar-Hillel, Y., and Levy, A., 1973, Foundations of Set Theory (Second Revised Edition), North-Holland Publishing Company, Amsterdam.Google Scholar
  101. 101.
    Frege, G., 1892, Review of [Cantor 1887 in Cantor 1890], Zeitschrift für Philosophie und philosophische Kritik 100, pp. 269–272. Reprinted in Gottlob Frege Kleine Schriften, Herausgegeben von Ignacio Angelelli, Georg Olms Verlagsbuchhandlung, Hildesheim, 1967, pp. 163–166. English Translation by Hans Kaal in Gottlob Frege Collected Papers on Mathematics, Logic, and Philosophy, edited by Brian McGuinness, Basil Blackwell Publishers Ltd, Oxford, 1984, pp. 178–181.Google Scholar
  102. 102.
    Fuchs, L., 1961, ``Note on Fully Ordered Semigroups,'' Acta Mathematica Academiae Scientiarum Hungaricae 12, pp. 255–259.Google Scholar
  103. 103.
    Fuchs, L., 1963, Partially Ordered Algebraic Systems, Pergamon Press.Google Scholar
  104. 104.
    Gleyzal, A., 1937, ``Transfinite Real Numbers,'' Proceedings of the National Academy of Sciences 23, pp. 581–587.Google Scholar
  105. 105.
    Grassmann, H., 1861, Lehrbuch der Arithmetik für höhere Lehranstalten pt. 1, Enslin, Berlin.Google Scholar
  106. 106.
    Grassmann, H., 1862, Die Ausdehnungslehre, Leipzig. Reprinted in [Grassmann 1894]. For Mark Kormes' English translation of the relevant material, see A Source Book in Mathematics, edited by D. E. Smith, Dover Publications, New York, 1959, pp. 684–685.Google Scholar
  107. 107.
    Grassmann, H., 1894, Gesammealte Mathematische und Physikalische Werke, Volume I, Part II, Leipzig.Google Scholar
  108. 108.
    Guicciardini, N., 1989, The Development of Newtonian Calculus in Britain 1700–1800, Cambridge University Press.Google Scholar
  109. 109.
    Hahn, H., 1907, ``Über die nichtarchimedischen Grössensysteme,'' Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Wien, Mathematisch - Naturwissenschaftliche Klasse 116 (Abteilung IIa), pp. 601–655.Google Scholar
  110. 110.
    Hallett, M., 1984, Cantorian Set Theory and the Limitation of Size, Oxford Logic Guides: 10, Clarendon Press, Oxford.Google Scholar
  111. 111.
    Hankel, H., 1867, Theorie der Komplexen Zahlsysteme, Leipzig.Google Scholar
  112. 112.
    Hardy, G. H., 1903, Review of [Stolz and Gmeiner 1902], Mathematical Gazette 2, pp. 312–313.Google Scholar
  113. 113.
    Hardy, G. H., 1910, Orders of Infinity, The ``Infinitärcalcül'' of Paul Du Bois-Reymond, Cambridge University Press, Cambridge. Reprinted 1971, Hafner, New York.Google Scholar
  114. 114.
    Hardy, G. H., 1912, ``Properties of Logarithmico-Exponential Functions,'' Proceedings of the London Mathematical Society (2) 10, pp. 54–90.Google Scholar
  115. 115.
    Haupt, O., 1929, Einführung In Die Algebra, Zweiter Band - Mit Einem Anhang Von W. Krull, Akademische Verlagsgesellschaft M. B. H., Leipzig.Google Scholar
  116. 116.
    Hauschild, K., 1966, ``Über die Konstruktion von Erweiterungskörpern zu nichtarchimedisch angeordneten Körpern mit Hilfe von Hölderschen Schnitten,'' Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin. Mathematisch-Naturwissenschaftliche Reihe 15, pp. 685–686.Google Scholar
  117. 117.
    Hausdorff, F., 1906, ``Untersuchungen über Ordungtypen,'' Berichte über die Verhandlungen der königlich sächsischen Gesellschaft der Wissenschaften zu Leipzig, Matematisch - Physische Klasse 58, pp. 106–169.Google Scholar
  118. 118.
    Hausdorff, F., 1907, ``Untersuchungen über Ordungtypen,'' Berichte über die Verhandlungen der königlich sächsischen Gesellschaft der Wissenschaften zu Leipzig, Matematisch - Physische Klasse 59, pp. 84–159.Google Scholar
  119. 119.
    Hausdorff, F., 1908, ``Grundzüge einer Theorie der geordneten Mengen,'' Mathematische Annalen 65, pp. 435–505.Google Scholar
  120. 120.
    Hausdorff, F., 1909, ``Die Graduierung nach dem Endverlauf,'' Abhandlungen der math. phys. Klasse der königlich sächsischen Gesellschaft der Wissenschaften 31, pp. 295–335.Google Scholar
  121. 121.
    Hausdorff, F., 1914, Grundzüge der Mengenlehre, Leipzig.Google Scholar
  122. 122.
    Hausdorff, F., 1927, Mengenlehre, W. de Gruyter, Berlin.Google Scholar
  123. 123.
    Hausdorff, F., 1957, Set Theory, Chelsea Publishing Company, New York.Google Scholar
  124. 124.
    Heath, T., 1956, Euclid: The Thirteen Books of The Elements, Volumes 1–3, Translated From the Text of Heiberg with an Introduction and Commentary, Second Edition Revised with Additions, Dover Publications, Inc., New York.Google Scholar
  125. 125.
    Helmholtz, H. von, 1887, ``Zählen und Messen, erkenntnisstheoretisch betrachtet'' in Philosophische Aufsätze Eduard Zeller zu seinem fünfzigjährigen Doktorjubiläum gewidmet, Leipzig, Fues' Verlag, pp. 17–52. Reprinted in English translation as ``Numbering and Measuring from an Epistemological Viewpoint'' in Hermann Von Helmholtz Epistemological Writings, The Paul Hertz/Moritz Schlick Centenary Edition of 1921, with Notes and Commentary by the Editors. Newly translated by Malcolm F. Lowe. Edited, with an Introduction and Bibliography, by Robert S. Cohen and Yehuda Elkana, D. Reidel Publishing Company, Dordrecht-Holland, 1977.Google Scholar
  126. 126.
    Hessenberg, G., 1905, ``Begründung der elliptischen Geometrie,'' Mathematische Annalen 61, pp. 173–184.Google Scholar
  127. 127.
    Hessenberg, G., 1905a, ``Neue Begründung der Sphärik,'' Sitzungsberichte der Berliner mathematischen Gesellschaft 4, pp. 69–77.Google Scholar
  128. 128.
    Hessenberg, G., 1906, Grundbegriffe der Mengenlehre, Abhandlungen der Friesschen Schule, (Neue Folge), Band I, Heft IV, Göttingen. Reprinted in 1906 by Vandenhoeck & Ruprecht, Göttingen.Google Scholar
  129. 129.
    Hilbert, D., 1899, Grundlagen der Geometrie, Festschrift zur Feier der Enthüllung des Gauss-Weber Denkmals in Göttingen, Teubner, Leipzig.Google Scholar
  130. 130.
    Hilbert, D., 1903, ``Über den Satz von der Gleichheit der Basiswinkel im gleichschenkligen Dreieck,'' Proceedings of the London Mathematical Society 35, pp. 50–68. Reprinted with revisions in [Hilbert 1903a, pp. 88–107]. For an English translation of the revised text, see [Hilbert 1971, pp. 113–132].Google Scholar
  131. 131.
    Hilbert, D., 1903a, Second Edition of [Hilbert 1899].Google Scholar
  132. 132.
    Hilbert, D., 1971, Foundations of Geometry, Open Court, LaSalle, Ilinois. English translation by Leo Unger of Paul Bernays' Revised and Enlarged Tenth Edition of [Hilbert 1899].Google Scholar
  133. 133.
    Hjelmslev, J., 1907, ``Neue Begründung der ebenen Geometrie,'' Mathematische Annalen 64, pp. 449–474.Google Scholar
  134. 134.
    Hjelmslev, J., 1950, ``Eudoxus' Axiom and Archimedes' Lemma,'' Centaurus 1, pp. 2–11. For the German version see, ``Über Archimedes' Grössenlehre,'' Matematiskfysiske Meddelelser udgivet af det Kongelige Danske Videnskabernes Selskab 25 (1950). no. 15, pp. 1–13.Google Scholar
  135. 135.
    Hölder, O., 1901, ``Die Quantität und die Lehre vom Mass,'' Berichte über die Verhandlungen der königlich sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch - Physische Classe 53, pp. 1–64.Google Scholar
  136. 136.
    Hölder, O., 1924, Die Mathematische Methode, Verlag Von Julius Springer, Berlin.Google Scholar
  137. 137.
    Hölder, O., 1996, ``The Axioms of Quantity and the Theory of Measurement,'' Journal of Mathematical Psychology 40, pp. 235–252. English translation by Joel Michell and Catherine Ernst of Part 1 of [Hölder 1901]. For the english translation by Joel Michell and Catherine Ernst of Part 2 of [Hölder 1901], see Journal of Mathematical Psychology 41 (1997), pp. 345–356.Google Scholar
  138. 138.
    Hoppe, E. R., 1884, Review of [Stolz 1884], Jahrbuch über die Fortschritte der Mathematik 16, pp. 48–49.Google Scholar
  139. 139.
    Huntington, E. V., 1902, ``On a New Edition of Stolz's Allgemeine Arithmetik, with an Account of Peano's Definition of Number,'' Bulletin of the American Mathematical Society 9, pp. 40–46.Google Scholar
  140. 140.
    Huntington, E. V., 1905, The Continuum as a Type of Order: an Exposition of the Modern Theory; with an Appendix on the Transfinite Numbers, The Publication Office of Harvard University, Cambridge, Massachusetts. Reprinted from Annals of Mathematics (2) 6 (1904–1905), pp.151–184; 7 (1905–1906), pp. 15–43.Google Scholar
  141. 141.
    Huntington, E. V., 1917, The Continuum and Other Types of Serial Order; with an Introduction to Cantor's Transfinite Numbers, Second Edition, Harvard University Press, Cambridge, Massachusetts. Reprinted in 1955 by Dover Publications.Google Scholar
  142. 142.
    Jourdain, P., 1911, Review of [Natorp 1910], Mind 20, pp. 552–560.Google Scholar
  143. 143.
    Kamke, E., 1950, Theory of Sets, Dover Publications, New York.Google Scholar
  144. 144.
    Keisler, H. J., 1994, ``The Hyperreal Line,'' in [Ehrlich 1994], pp. 207–237.Google Scholar
  145. 145.
    Kelly, J. L., 1955, General Topology, D. Van Nostrand Company, Inc., Princeton, New Jersey.Google Scholar
  146. 146.
    Kerry, B., 1885, ``Ueber G. Cantors Mannigfaltigkeitsuntersuchungen,'' Vierteljahresschrift für wissensch. Philos. 9, pp. 191–232.Google Scholar
  147. 147.
    Killing, W., 1885, Die Nicht-Euklidischen Raumformen in analytischer Behandlung, B. G. Teubner, Leipzig.Google Scholar
  148. 148.
    Killing, W., 1895–96, ``Bemerkungen über Veronese's transfinite Zahlen,'' Index Lectionum, Münster Universität, Münster.Google Scholar
  149. 149.
    Killing, W., 1897, ``Ueber Transfinite Zahlen,'' Mathematische Annalen 48, pp. 425–432.Google Scholar
  150. 150.
    Killing, W., 1898, Einführung in die Grundlagen der Geometrie, Zweiter Band, Druck und Verlag von Ferinard Schöningh, Münster, Osnabrück, und Mainz.Google Scholar
  151. 151.
    Killing, W., and Hovestadt, H., 1910, Handbuch des Mathematischen Unterrichts, Erster Band, Druck und Verlag Von B. G. Teubner, Leipzig und Berlin.Google Scholar
  152. 152.
    Klaua, D., 1959/1960, ``Transfinite reelle Zahlenräume,'' Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Reihe 9, pp. 169–172.Google Scholar
  153. 153.
    Klein, F., 1911/1939, Elementary Mathematics from an Advanced Standpoint: arithmetic, algebra, analysis. Translated from the German by E. R. Hedrick and C. A. Noble, Dover Publications, New York.Google Scholar
  154. 154.
    Kline, M., 1980, Mathematics:The Loss of Certainty, Oxford Universitry Press, New York.Google Scholar
  155. 155.
    Knorr, W., 1978, ``Archimedes and the Pre-Euclidean Proportion Theory'', Archives Internationales d'Histore des Sciences 28, pp. 183–244.Google Scholar
  156. 156.
    Knorr, W., 1987, ``Archimedes After Dijksterhuis: A Guide to Recent Studies'' in [Dijksterhuis 1987], pp. 419–451.Google Scholar
  157. 157.
    Krantz, D., Luce, R. D., Suppes, P. and Tversky, A., 1971, Foundations of Measurement, Volume 1, Academic Press, New York.Google Scholar
  158. 158.
    Kuratowski, K. and Mostowski, A., 1968, Set Theory, North-Holland Publishing Company, Amsterdam.Google Scholar
  159. 159.
    Laugwitz, D., 1961, ``Anwendungen unendlichkleiner Zahlen I. Zur Theorie der Distributionen,'' Journal für die reine und angewandte Mathematik 207, pp. 53–60.Google Scholar
  160. 160.
    Laugwitz, D., 1961a, ``Anwendungen unendlichkleiner Zahlen II. Ein Zugang zur Operatorenrechnung von Mikusinski Distributionen,'' Journal für die reine und angewandte Mathematik 208, pp. 22–34.Google Scholar
  161. 161.
    Laugwitz, D., 1975, ``Tullio Levi-Civita's Work on Non-Archimedean Structures (With an Appendix: Properties of Levi-Civita Fields),'' in Tullio Levi-Civita Convegno Internazionale Celebrativo Del Centenario Della Nascita, Accademia Nazionale Dei Lincei Atti Dei Convegni Lincei, Rome 8, pp. 297–312.Google Scholar
  162. 162.
    Laugwitz, D., 2002, ``Debates about infinity in mathematics around 1890: The Cantor-Veronese controversy, its origins and its outcome,'' N.T.M. Neue Serie. Internationale Zeitschrift Für Geschichte und Ethik der Naturwissenscaften, Technik und Medizn 10, pp. 102–126.Google Scholar
  163. 163.
    Levi-Civita, T., 1892–93, ``Sugli infiniti ed infinitesimi attuali quali elementi analitici,'' Atti del R. Istituto Veneto di Scienze Lettre ed Arti, Venezia (Serie 7) 4, pp. 1765–1815. Reprinted in [Levi-Civita 1954].Google Scholar
  164. 164.
    Levi-Civita, T., 1898, ``Sui Numeri Transfiniti,'' Atti della Reale Accademia dei Lincei, Classe di scienze fisiche, matematiche e naturali, Rendiconti, Roma serie Va, 7, pp. 91–96, 113–121. Reprinted in [Levi-Civita 1954].Google Scholar
  165. 165.
    Levi-Civita, T., 1954, Tullio Levi-Civita, Opere Matematiche, Memorie e Note, Volume primo 1893–1900, Nicola Zanichelli, Bologna, 1954.Google Scholar
  166. 166.
    Levy, A., 1979, Basic Set Theory, Springer-Verlag, Berlin.Google Scholar
  167. 167.
    Massaza, C., 1970–71, ``On the Completion of Ordered Fields,'' Praktikà tês Akademías Open image in new window 45, pp. 174–178.Google Scholar
  168. 168.
    Meschkowski, H., 1965, ``Aus den Briefbüchern Georg Cantor,'' Archive for History of Exact Sciences 2, pp. 503–519.Google Scholar
  169. 169.
    Meschkowski, H., 1967, Probleme des Unendlichen, Werk und Leben Georg Cantors, Braunschweig (Vieweg).Google Scholar
  170. 170.
    Meschkowski, H. and Nilson, W., (Editors), 1991, Georg Cantor Briefe, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  171. 171.
    Mittag-Leffler, G., February 7, 1883, Letter from Mittag-Leffler to Cantor, excerpt in [Meschkowski and Nilson 1991, p. 115].Google Scholar
  172. 172.
    Moerdijk, I. and Reyes, G., 1991, Models for Smooth Infinitesimal Analysis, Springer-Verlag, New York.Google Scholar
  173. 173.
    Moore, A. W., 1990 (Second Edition, 2001), The Infinite, Routledge, London.Google Scholar
  174. 174.
    Moore, G. H., 1982, Zermelo's Axiom of Choice: Its Origins, Development and Influence, Springer-Verlag, New York.Google Scholar
  175. 175.
    Moore, M., 2002, ``A Cantorian Argument Against Infinitesimals,'' Synthese 133, pp. 305–330.Google Scholar
  176. 176.
    Munkres, J., 1975, Topology: A First Course, Prentice-Hall, Inc., Englewood Clifs, New Jersey.Google Scholar
  177. 177.
    Natorp, P., 1910, Die logischen Grundlagen der exakten Wissenschaften, B. G. Teubner, Leibzig and Berlin.Google Scholar
  178. 178.
    Neder, L., 1941–43, ``Modell einer Differentialrechnung mit aktual unendlich kleinen Grössen erster Ordnung,'' Mathematische Annalen 118, pp. 251–262.Google Scholar
  179. 179.
    Neder, L., 1941–43a, ``Modell einer Leibnizischen Differentialrechnung mit aktual unendlich kleinen Grössen sämtlicher Ordnungen,'' Mathematische Annalen 118, pp. 718–732.Google Scholar
  180. 180.
    Neumann, B., 1949, ``On Ordered Division Rings,'' Transactions of the American Mathematical Society 66, pp. 202–252.Google Scholar
  181. 181.
    Noether, N. and Cavaillès, J., 1937, Briefwechsel Cantor-Dedekind, Herman, Paris.Google Scholar
  182. 182.
    Pasch, M., 1882, Vorlesungen über neuere Geometrie, B. G. Teubner, Leipzig.Google Scholar
  183. 183.
    Pasch, M., 1926, Vorlesungen über Neuere Geometrie, Zweite Auflage, mit einem Anhang: Die Grundlegung der Geometrie in Historischer Entwicklung von Max Dehn, Verlag von Julius Springer, Berlin.Google Scholar
  184. 184.
    Peano, G., 1884, Extract from: Angelo Genocchi, Calcolo differenziale e principii di calcolo integrale, con aggiunte dal Dr. Giuseppe Peano,Torino, Bocca. Repinted in [Peano 1957, pp. 47–60]Google Scholar
  185. 185.
    Peano, G., 1889, I principii di geometria logicamente esposti, Torino, Bocca. Reprinted in [Peano 1958, pp. 56–91].Google Scholar
  186. 186.
    Peano, G., 1891, ``Lettera aperta al prof. G. Veronese,'' Rivista di Matematica 1, pp. 267–269.Google Scholar
  187. 187.
    Peano, G., 1891a, ``Sulla Formula Di Taylor,'' Atti della Reale Accademia di scienze di Torino 27A, pp. 40–46. Repinted in [Peano 1957, pp. 204–209].Google Scholar
  188. 188.
    Peano, G., 1892, ``Dimostrazione dell'impossibilità di segmenti infinitesmi costanti,'' Rivista di Matematica 2, pp. 58–62.Google Scholar
  189. 189.
    Peano, G., 1892a, Review of [Veronese 1891], Rivista di Matematica 2, pp. 143–144.Google Scholar
  190. 190.
    Peano, G., 1892b, ``Breve replica al Prof. Veronese,'' Rendiconti del Circolo Matematico di Palermo 6, p.160.Google Scholar
  191. 191.
    Peano, G., 1894, ``Sui fondamenti della geometria,'' Rivista di Matematica 4, pp. 51–90. Reprinted in [Peano 1959, pp. 113–157].Google Scholar
  192. 192.
    Peano, G. 1894a, ``Notations de Logique Mathématique.'' Introduction to Formulaire de Mathématiques, Ch. Guadagnini, Turin. Reprinted in [Peano 1958, pp. 123–176].Google Scholar
  193. 193.
    Peano, G., 1900, ``Formules de Logique Mathématique,'' Revue de mathématique 7, pp. 1–41. Reprinted in [Peano 1958, pp. 304–361].Google Scholar
  194. 194.
    Peano, G., 1910, ``Sugli Ordini Degli Infiniti,'' Rendiconti della R. Accademia dei Lincei, (5a) 19, 1°Sem. pp. 778–781. Repinted in [Peano 1957, pp. 359–362].Google Scholar
  195. 195.
    Peano, G., 1957, Opere Scelte, Volume 1, Edizioni Cremonese, Roma.Google Scholar
  196. 196.
    Peano, G., 1958, Opere Scelte, Volume 2, Edizioni Cremonese, Roma.Google Scholar
  197. 197.
    Peano, G., 1959, Opere Scelte, Volume 3, Edizioni Cremonese, Roma.Google Scholar
  198. 198.
    Peirce, C. S., 1898, ``The Logic of Continuity,'' in C. Hartshone and P. Weiss (Editors), Collected Papers of Charles Sanders Peirce, Volume VI, Harvard University Press, 1935, pp. 132–146.Google Scholar
  199. 199.
    Peirce, C. S., 1900, ``Infinitesimals,'' in C. Hartshone and P. Weiss (Editors), Collected Papers of Charles Sanders Peirce, Volume III, Harvard University Press, 1935, pp. 360–365.Google Scholar
  200. 200.
    Peirce, C. S., 1976, The New Elements of Mathematics by Charles S. Peirce, Edited by C. Eisele, Moulton, The Hague.Google Scholar
  201. 201.
    Pincherle, S., 1884, ``Alcune osservazioni sugli ordini d'infinito delle funzioni,'' Memorie della R. Accademia delle scienze di Bologna 5 (Serie 4), pp. 739–750.Google Scholar
  202. 202.
    Poincaré, H., 1893, ``Le continu mathématique,'' Revue de métaphysique et de morale 1, pp. 26–34. Reprinted with modifications as Chapter II of Science et l'hypothèse, Flammarion, Paris, 1902; English translation: Science and Hypothesis, Dover Publications, Inc., New York, 1952.Google Scholar
  203. 203.
    Poisson, S. 1883, Traité de mécanique. 2d ed., Paris.Google Scholar
  204. 204.
    Priess-Crampe, S., 1983, Angeordnete Strukturen, Gruppen, Körper, projektive Ebenen, Springer-Verlag, Berlin.Google Scholar
  205. 205.
    Priest, G., 1998, ``Number,'' in Routledge Encyclopedia of Philosophy, Volume 7, general editor, Edward Craig, Routledge, London; New York, 1998, pp. 47–54.Google Scholar
  206. 206.
    Pringsheim, A., 1898–1904, ``Irrationalzahlen und Konvergenz Unendlicher Prozesse,'' in Encyklopädie der Mathematischen Wissenschaften I-1: Arithmetik und Algebra, Verlag und Druck Von B.G. Teubner, Leipzig, pp. 47–146.Google Scholar
  207. 207.
    Redei, L., 1967, Algebra, Volume 1, Pergamon Press.Google Scholar
  208. 208.
    Robinson, A., 1961, ``Non-standard Analysis,'' Proceedings of the Royal Academy of Sciences, Amsterdam (Series A) 64, pp. 432–440. Reprinted in [Robinson 1979, pp. 3–11].Google Scholar
  209. 209.
    Robinson, A., 1967, ``The Metaphysics of the Calculus,'' in Problems in the Philosophy of Mathematics, edited by I. Lakatos, North-Holland Publishing Company, Amsterdam, pp. 28–46. Reprinted in [Robinson 1979, pp. 537–549].Google Scholar
  210. 210.
    Robinson, A., 1973, ``Function Theory on Some Nonarchimedean Fields,'' Papers in the Foundations of Mathematics, Slaught Memorial Papers No.13., Mathematical Association of America, (Supplement to American Mathematical Monthly 80, pp. 87–109). Reprinted in [Robinson 1979, pp. 283–305].Google Scholar
  211. 211.
    Robinson, A., 1974, Non-standard Analysis, Revised Edition, North-Holland Publishing Company, Amsterdam.Google Scholar
  212. 212.
    Robinson, A., 1979, Selected Papers of Abraham Robinson, Volume 2: Nonstandard Analysis and Philosophy, edited with introductions by W. A. J. Luxemburg and S. Körner, Yale University Press, New Haven.Google Scholar
  213. 213.
    Rosenlicht, M., 1983, ``Hardy Fields,'' Journal of Mathematical Analysis and Applications 93, pp. 297–311.Google Scholar
  214. 214.
    Rosenstein, J., 1982, Linear Orderings, Academic Press, New York.Google Scholar
  215. 215.
    Russell, B., 1901, ``Recent Work on the Principles of Mathematics,'' International Monthly 4, 83–101.Google Scholar
  216. 216.
    Russell, B., 1903, The Principles of Mathematics, Cambridge University Press.Google Scholar
  217. 217.
    Russell, B., 1918, ``Mathematics and the Metaphysicians,'' in Mysticism and Logic, London. Reprinted in The World of Mathematics, Volume 3, edited by James R. Newman, Simon and Schuster, New York, 1956; Allen & Unwin, London, 1960; The Growth of Mathematics, edited by Robert W. Marks, Bantam, New York, 1964.Google Scholar
  218. 218.
    Russell, B., 1937, Principles of Mathematics, Second Edition, W. W. Norton & Company, Inc., Publishers, New York.Google Scholar
  219. 219.
    Russell, B., 1993, The Collected Papers of Bertrand Russell, Volume 3: Toward the ``Principles of Mathematics,'' 1900–02, edited by Gregory H. Moore, Routledge, London and New York.Google Scholar
  220. 220.
    Sankaran, N. and Venkataraman, R., 1962, ``A Generalization of the Ordered Group of Integers,'' Mathematische Zeitschrift 79, pp. 21–31.Google Scholar
  221. 221.
    Satyanarayana, M., 1979, Positively Ordered Semigroups, Marcel Dekker, Inc., New York and Basel.Google Scholar
  222. 222.
    Satyanarayana, M. and Nagore, C. Sri Hari, 1979, ``On Naturally Ordered Semigroups,'' Semigroup Forum 18, pp. 95–103.Google Scholar
  223. 223.
    Schmieden, C. and Laugwitz, D., 1958, ``Eine Erweiterung der Infinitesimalrechnung,'' Mathematische Zeitschrift 69, pp. 1–39.Google Scholar
  224. 224.
    Schoenflies, A., 1898, ``Mengenlehre,'' Encyklopädie der Mathematischen WissenschaftenI1, Erster Teil, Erste Hälfte: Arithmetik und Algebra, Verlag und Druck Von B. G. Teubner, Leipzig, 1898–1904, pp. 1–129.Google Scholar
  225. 225.
    Schoenflies, A., 1906, ``Über die Möglichkeit einer projektiven Geometrie bei transfiniter (nicht archimedischer) Massbestimmung,'' Jahresbericht der Deutschen Mathematiker-Vereinigung 15, pp. 26–47.Google Scholar
  226. 226.
    Schoenflies, A., 1908, ``Die Entwickelung Der Lehre Von Den Punktmannigfaltigkeiten, Zweiter Teil,'' Jahresbericht der Deutschen Mathematiker-Vereinigung, Ergänzungsband 2, pp.1–331. Reprinted as a seperate volume by Druck und Verlag Von B. G. Teubner, Leipzig.Google Scholar
  227. 227.
    Schur, F., 1899, ``Ueber den Fundamentalsatz der projectiven Geometrie,'' Mathematische Annalen 51, pp. 401–409.Google Scholar
  228. 228.
    Schur, F., 1902, ``Ueber die Grundlagen der Geometrie,'' Mathematische Annalen 55, pp. 401–409.Google Scholar
  229. 229.
    Schur, F., 1903, ``Zur Proportionslehre,'' Mathematische Annalen 57, pp. 205–208.Google Scholar
  230. 230.
    Schur, F., 1904, ``Zur Bolyai-Lobatschefskijschen Geometrie,'' Mathematische Annalen 59, pp. 314–320.Google Scholar
  231. 231.
    Schur, F., 1909, Grundlagen der Geometrie, Druck und Verlag Von B. G. Teubner, Leipzig und Berlin.Google Scholar
  232. 232.
    Scott, D., 1969, ``On Completing Ordered Fields,'' in Applications of Model Theory to Algebra, Analysis, and Probability, W. A. J. Luxemburg, Ed., Holt, Rinehart and Winston, New York, pp. 274–278.Google Scholar
  233. 233.
    Sierpinski, W., 1965, Cardinal and Ordinal Numbers (Second Revised Edition), Polish Scientific Publishers, Warsaw.Google Scholar
  234. 234.
    Sikorski, R., 1948, ``On an Ordered Algebraic Field,'' Comptes Rendus des Séances de la Classe III, Sciences Mathématiques et Physiques. La Société des Sciences et des Lettres de Varsovie 41, pp, 69–96.Google Scholar
  235. 235.
    Stolz, O., 1881, ``B. Bolzano's Bedeutung in der Geschichte der Infinitesimalrechnung,'' Mathematische Annalen 18, pp. 255–279.Google Scholar
  236. 236.
    Stolz, O., 1882, ``Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes,'' Berichte des Naturwissenschaftlich-Medizinischen Vereines in Innsbruck 12, pp. 74–89.Google Scholar
  237. 237.
    Stolz, O., 1883, ``Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes,'' Mathematische Annalen 22, pp. 504–519.Google Scholar
  238. 238.
    Stolz, O., 1884, ``Die unendlich kleinen Grössen,'' Berichte des Naturwissenschaftlich-Medizinischen Vereines in Innsbruck 14, pp. 21–43.Google Scholar
  239. 239.
    Stolz, O., 1885, Vorlesungen über Allgemeine Arithmetik, Erster Theil: Allgemeines und Arithhmetik der Reelen Zahlen, Teubner, Leipzig.Google Scholar
  240. 240.
    Stolz, O., 1886, Vorlesungen über Allgemeine Arithmetik, Zweiter Theil: Arithhmetik der Complexen Zahlen, Teubner, Leipzig.Google Scholar
  241. 241.
    Stolz, O., 1888, ``Ueber zwei Arten von unendlich kleinen und von unendlich grossen Grössen,'' Mathematische Annalen 31, pp. 601–604.Google Scholar
  242. 242.
    Stolz, O., 1891, ``Ueber das Axiom des Archimedes,'' Mathematische Annalen 39, pp. 107–112.Google Scholar
  243. 243.
    Stolz, O., 1891a, Grössen und Zahlen, Leipzig, Teubner.Google Scholar
  244. 244.
    Stolz, O., 1894, ``Die ebenen Vielecke und die Winkel mit Einschluss der Berührungswinkel als Systeme von absoluten Grössen,'' Monatshefte für Mathematik und Physik 5, pp. 233–240.Google Scholar
  245. 245.
    Stolz, O., 1895, ``Zum Infinitärcalcül,'' Rivista di matematica 5, pp. 166–167.Google Scholar
  246. 246.
    Stolz, O., 1896, ``Bemerkung zum Aufsatze: Die ebenen Vielecke und die Winkel mit Einschluss der Berührungswinkel als Systeme von absoluten Grössen,'' Monatshefte für Mathematik und Physik 7, p. 296.Google Scholar
  247. 247.
    Stolz, O. and Gmeiner, J.A., 1902, Theoretische Arithmetik, Teubner, Leipzig.Google Scholar
  248. 248.
    Stolz, O. and Gmeiner, J.A., 1915, Theoretische Arithmetik, (Abteilung II: Die Lehren Von Den Reelen Und Von Den Komplexen Zahlen), Zweite Auflage, Teubner, Leipzig.Google Scholar
  249. 249.
    Thomae, J., 1870, Abriss einer Theorie der complexen Functionen und der Thetafunctionen einer Veränderlichen, Verlag von Louis Nebert, Halle.Google Scholar
  250. 250.
    Thomae, J., 1872, ``Sur les limites de la convergence et de la divergence des séries infinies à termes positifs,'' Annali di matematica pura ed applicata (2) 5, pp. 121–129.Google Scholar
  251. 251.
    Thomae, J., 1873, Abriss einer Theorie der complexen Functionen und der Thetafunctionen einer Veränderlichen, Zweite vermehrte Auflage,Verlag von Louis Nebert, Halle.Google Scholar
  252. 252.
    Thomae, J., 1880, Elementare Theorie der analytischen Functionen einer complexen Veränderlichen, Verlag von Louis Nebert, Halle.Google Scholar
  253. 253.
    Vahlen, K. Th., 1905, Abstrakte Geometrie, B. G. Teubner, Leipzig.Google Scholar
  254. 254.
    Vahlen, K. Th., 1907, ``Über nicht-archimedische Algebra,'' Jahresbericht der Deutschen Mathematiker-Vereinigung 16, pp. 409–421.Google Scholar
  255. 255.
    van den Dries, L. and Ehrlich, P., 2001, ``Fields of Surreal Numbers and Exponentiation,'' Fundamenta Mathematicae 167, pp. 173–188; erratum, ibid. 168, No. 2 (2001), pp. 295–297.Google Scholar
  256. 256.
    van der Waerden, B. L., 1930, Moderne Algebra I, Julius Springer, Berlin.Google Scholar
  257. 257.
    van der Waerden, B. L., 1937, Moderne Algebra, Julius Springer, Berlin.Google Scholar
  258. 258.
    Veblen, O., 1905, ``Definition in Terms of Order Alone in the Linear Continuum and in Well-Ordered Sets,'' Transactions of the American Mathematical Society 6, pp. 165–171.Google Scholar
  259. 259.
    Veblen, O., 1906, Review of [Huntington 1905], Bulletin of the American Mathematical Society 12, pp. 302–305.Google Scholar
  260. 260.
    Veronese, G., 1889, ``Il continuo rettilineo e l'assioma V di Archimede,'' Memorie della Reale Accademia dei Lincei, Atti della Classe di scienze naturali, fisiche e matematiche (4), 6, pp. 603–624.Google Scholar
  261. 261.
    Veronese, G., 1891, Fondamenti di geometria a più dimensioni e a più specie di unità rettilinee esposti in forma elementare, Lezioni per la Scuola di magistero in Matematica. Padova, Tipografia del Seminario.Google Scholar
  262. 262.
    Veronese, G., 1893–94, ``Osservazioni sui principii della geometria,'' Atti della Reale Accademia di scienze, lettere ed arti di Padova 10, pp. 195–216.Google Scholar
  263. 263.
    Veronese, G., 1894,Grundzüge der Geometrie von mehreren Dimensionen und mehreren Arten gradliniger Einheiten in elementarer Form entwickelt. Mit Genehmigung des Verfassers nach einer neuen Bearbeitung des Originals übersetzt von Adolf Schepp, Leipzig, Teubner.Google Scholar
  264. 264.
    Veronese, G., 1896, ``Intorno ad alcune osservazioni sui segmenti infiniti o infinitesimi attuali,'' Mathematische Annalen 47, pp. 423–432.Google Scholar
  265. 265.
    Veronese, G., 1895–97, Elementi di Geometria, ad uso dei licei e degli istituti tecnici (primo biennio), trattati con la collaborazione di P. Gazzaniga, Verona e Padova, Drucker.Google Scholar
  266. 266.
    Veronese, G., 1897, ``Sul postulato della continuità,'' Rendiconti della Reale Accademia dei Lincei (5) 6, pp. 161–167.Google Scholar
  267. 267.
    Veronese, G., 1898, Appendice agli Elementi di Geometria, Verona e Padova, Drucker.Google Scholar
  268. 268.
    Veronese, G., 1898a, ``Segmenti e numeri transfiniti,'' Rendiconti della Reale Accademia dei Lincei (5) 7, pp. 79–87.Google Scholar
  269. 269.
    Veronese, G., 1902, ``Les postulats de la Géométrie dans l'enseignement,'' in Compte Rendu du 2e Congrès international des mathématiciens (Paris 1900), Paris, pp. 433–450.Google Scholar
  270. 270.
    Veronese, G., 1909, ``La geometria non-Archimedea,'' Atti del 4º Congresso internazionale dei Matematici, Roma 1908, Vol. I, pp. 197–208. French Translation in Bulletin des sciences mathématiques (2), 33 (1909), pp. 186–204. For an English translation, see [Veronese 1994].Google Scholar
  271. 271.
    Veronese, G., 1994, ``On Non-Archimedean Geometry,'' (English translation by M. Marion with editorial notes by P. Ehrlich of: ``La geometria non-Archimedea,'' Atti del IV Congresso Internazionale dei Matematici (Roma 6–11 Aprile 1908) Volume I, Rome, 1909, pp.197–208) in Real Numbers, Generalizations of the Reals, and Theories of Continua, P. Ehrlich, Ed., Kluwer Academic Publishers, Dordrecht, Holland, 1994.Google Scholar
  272. 272.
    Vitali, G., 1912, ``Sulle applicazioni del postulato della continuità nella Geometria elementare,'' Questioni Riguardanti Le Matematiche Elementari, Raccolte E Coordinate, Volume I: Critica Dei Princippi, F. Enriques, Ed., Nicola Zanichelli, Bologna, pp. 123–143; (Second Edition, 1925).Google Scholar
  273. 273.
    Vivanti, G., 1891, Review of [Bettazzi 1890], Bulletin des Sciences Mathématiques (2), 15, pp. 53–68.Google Scholar
  274. 274.
    Vivanti, G., 1891a, ``Sull'infinitesimo attuale,'' Rivista di matematica 1, pp. 135–153.Google Scholar
  275. 275.
    Vivanti, G., 1891b, ``Ancora sull'infinitesimo attuale,'' Rivista di matematica 1, pp. 248–255.Google Scholar
  276. 276.
    Vivanti, G., 1893–94, Review of [Levi-Civita 1892–93], Jahrbuch über die Fortschritte der Mathematik 251, pp. 105–106.Google Scholar
  277. 277.
    Vivanti, G., 1898, Review of [Levi-Civita 1898], Jahrbuch über die Fortschritte der Mathematik 29, p. 48.Google Scholar
  278. 278.
    Vivanti, G., 1899, Corso Di Calculo Infinitesimale, Messina, Libreria Editrice Ant. Trimarchi.Google Scholar
  279. 279.
    Vivanti, G., 1908, ``La Nozione Dell'infinito Secondi Gli Studi Più Recenti,'' Atti Della R. Accademia Peloritana 23, pp. 155–208.Google Scholar
  280. 280.
    Weyl, H., 1927, Philosophie der Mathematik und Naturwissenschaft, Druck und Verlag Von R. Oldenbourg, München und Berlin.Google Scholar
  281. 281.
    Zuckerman, M., 1973, ``Natural Sums of Ordinals,'' Fundamenta Mathematica 77, pp. 289–294.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of PhilosophyOhio UniversityAthensUSA

Personalised recommendations