Advertisement

Reduced gray matter volume in the left prefrontal, occipital, and temporal regions as predictors for posttraumatic stress disorder: a voxel-based morphometric study

  • Jan Christopher CwikEmail author
  • Nils Vahle
  • Marcella Lydia Woud
  • Denise Potthoff
  • Henrik Kessler
  • Gudrun Sartory
  • Rüdiger J. Seitz
Original Paper
  • 47 Downloads

Abstract

The concept of acute stress disorder (ASD) was introduced as a diagnostic entity to improve the identification of traumatized people who are likely to develop posttraumatic stress disorder (PTSD). Neuroanatomical models suggest that changes in the prefrontal cortex, amygdala, and hippocampus play a role in the development of PTSD. Using voxel-based morphometry, this study aimed to investigate the predictive power of gray matter volume (GMV) alterations for developing PTSD. The GMVs of ASD patients (n = 21) were compared to those of PTSD patients (n = 17) and healthy controls (n = 18) in whole-brain and region-of-interest analyses. The GMV alterations seen in ASD patients shortly after the traumatic event (T1) were also correlated with PTSD symptom severity and symptom clusters 4 weeks later (T2). Compared with healthy controls, the ASD patients had significantly reduced GMV in the left visual cortex shortly after the traumatic event (T1) and in the left occipital and prefrontal regions 4 weeks later (T2); no significant differences in GMV were seen between the ASD and PTSD patients. Furthermore, a significant negative association was found between the GMV reduction in the left lateral temporal regions seen after the traumatic event (T1) and PTSD hyperarousal symptoms 4 weeks later (T2). Neither amygdala nor hippocampus alterations were predictive for the development of PTSD. These data suggest that gray matter deficiencies in the left hemispheric occipital and temporal regions in ASD patients may predict a liability for developing PTSD.

Keywords

Acute stress disorder Left hemispheric Longitudinal analysis Magnetic resonance imaging Posttraumatic stress disorder Voxel-based morphometry 

Notes

Acknowledgments

All authors have agreed to authorship. There has been no prior publication. The authors would like to thank Jan Kirsten for editing the manuscript and Erika Rädisch (Institute of Diagnostic and Interventional Radiology) for assistance in acquiring the MRI scans. Furthermore, the authors would like to thank Benjamin Schürholt and Sascha Brunheim for their technical support, and Judith Holz and Helge Knuppertz for their support in the data collection. The authors would like to dedicate this study with the deepest respect and in grateful remembrance of Prof. Dr. Gudrun Sartory.

Financial disclosures

The study was supported by the Deutsche Forschungsgemeinschaft (DFG) (SA 735/18-1; SE 494/7-1).

Compliance with ethical standards

Conflict of interest

All authors report to have no biomedical or financial interest or potential conflict of interest.

Ethical standards

The Ethics Committees of the Universities of Wuppertal and Düsseldorf approved the study. The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

References

  1. 1.
    American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC.  https://doi.org/10.1176/appi.books.9780890423349 CrossRefGoogle Scholar
  2. 2.
    Bryant RA (2013) An update of acute stress disorder. PTSD Res Q 24:1–7Google Scholar
  3. 3.
    Spiegel D, Koopman C, Cardeña E, Classen C (1996) Dissociative symptoms in the diagnosis of acute stress disorder. In: Ray WJ (ed) Michelson LK. Plenum, New York, pp 367–380Google Scholar
  4. 4.
    Bryant RA (2018) The current evidence for acute stress disorder. Curr Psychiatry Rep.  https://doi.org/10.1007/s11920-018-0976-x CrossRefPubMedGoogle Scholar
  5. 5.
    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Washington, DCCrossRefGoogle Scholar
  6. 6.
    Kleim B, Ehlers A, Glucksman E (2007) Early predictors of chronic post-traumatic stress disorder in assault survivors. Psychol Med 37(10):1457–1467.  https://doi.org/10.1017/S0033291707001006 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bryant RA (2006) Acute stress disorder. Psychiatry 5:238–239.  https://doi.org/10.1053/j.mppsy.2006.04.003 CrossRefGoogle Scholar
  8. 8.
    Veazey C, Blanchard EB (2005) Early indicators and interventions for traumatic stress disorders secondary to motor vehicle accidents. In: Hennessy D, Wiesenthal D (eds) Nova Science. Hauppauge, NY, pp 199–214Google Scholar
  9. 9.
    Bryant RA (2011) Acute stress disorder as a predictor of posttraumatic stress disorder: a systematic review. J Clin Psychiatry 72(2):233–239.  https://doi.org/10.4088/JCP.09r05072blu CrossRefPubMedGoogle Scholar
  10. 10.
    Bryant RA, Creamer M, O’Donnell M, Silove D, McFarlane AC (2012) The capacity of acute stress disorder to predict posttraumatic psychiatric disorders. J Psychiatr Res 46(2):168–173.  https://doi.org/10.1016/j.jpsychires.2011.10.007 CrossRefPubMedGoogle Scholar
  11. 11.
    Bryant RA (2003) Acute stress reactions: can biological responses predict posttraumatic stress disorder? CNS Spectr 8(9):668–674CrossRefPubMedGoogle Scholar
  12. 12.
    Ahmed-Leitao F, Spies G, van den Heuvel L, Seedat S (2016) Hippocampal and amygdala volumes in adults with posttraumatic stress disorder secondary to childhood abuse or maltreatment: a systematic review. Psychiatry Res Neuroimaging 256:33–43.  https://doi.org/10.1016/j.pscychresns.2016.09.008 CrossRefPubMedGoogle Scholar
  13. 13.
    Bromis K, Calem M, Reinders AATS, Williams SCR, Kempton MJ (2018) Meta-analysis of 89 structural MRI studies in posttraumatic stress disorder and comparison with major depressive disorder. Am J Psychiatry.  https://doi.org/10.1176/appi.ajp.2018.17111199 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    O’Doherty DCM, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J (2015) A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res Neuroimaging 232(1):1–33.  https://doi.org/10.1016/j.pscychresns.2015.01.002 CrossRefGoogle Scholar
  15. 15.
    Kühn S, Gallinat J (2013) Gray matter correlates of posttraumatic stress disorder: a quantitative meta-analysis. Biol Psychiat 73(1):70–74.  https://doi.org/10.1016/j.biopsych.2012.06.029 CrossRefPubMedGoogle Scholar
  16. 16.
    Woon FL, Sood S, Hedges DW (2010) Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Progress Neuropsychopharmacol Biol Psychiatry 34(7):1181–1188.  https://doi.org/10.1016/j.pnpbp.2010.06.016 CrossRefGoogle Scholar
  17. 17.
    Karl A, Malta LS, Maercker A (2006) Meta-analytic review of event-related potential studies in post-traumatic stress disorder. Biol Psychol 71(2):123–147.  https://doi.org/10.1016/j.biopsycho.2005.03.004 CrossRefPubMedGoogle Scholar
  18. 18.
    Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD (2005) Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord 88:79–86.  https://doi.org/10.1016/j.jad.2005.05.014 CrossRefPubMedGoogle Scholar
  19. 19.
    Rogers MA, Yamasue H, Abe O, Yamada H, Ohtani T, Iwanami A, Aoki S, Kato N, Kasai K (2009) Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder. Psychiatry Res Neuroimaging 174(3):210–216.  https://doi.org/10.1016/j.pscychresns.2009.06.001 CrossRefGoogle Scholar
  20. 20.
    Liu Y, Li Y-J, Luo E-P, Lu H-B, Yin H (2012) Cortical thinning in patients with recent onset post-traumatic stress disorder after a single prolonged trauma exposure. PLoS One 7(6):e39025.  https://doi.org/10.1371/journal.pone.0039025 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ahmed F, Ras J, Seedat S (2012) Volumetric structural magnetic resonance imaging findings in pediatric posttraumatic stress disorder and obsessive compulsive disorder: a systematic review. Front Psychol 3:568.  https://doi.org/10.3389/fpsyg.2012.00568 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Im JJ, Kim B, Hwang J, Kim JE, Kim JY, Rhie SJ, Namgung E, Kang I, Moon S, Lyoo IK, Park C-H, Yoon S (2017) Diagnostic potential of multimodal neuroimaging in posttraumatic stress disorder. PLoS One 12(5):e0177847.  https://doi.org/10.1371/journal.pone.0177847 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen Y, Fu K, Feng C, Tang L, Zhang J, Huan Y, Cui J, Mu Y, Qi S, Xiong L, Ma C, Wang H, Tan Q, Yin H (2012) Different regional gray matter loss in recent onset PTSD and non PTSD after a single prolonged trauma exposure. PLoS One 7(11):e48298.  https://doi.org/10.1371/journal.pone.0048298 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kroes MCW, Rugg MD, Whalley MG, Brewin CR (2011) Structural brain abnormalities common to posttraumatic stress disorder and depression. J Psychiatry Neurosci 36(4):256–265.  https://doi.org/10.1503/jpn.100077 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tavanti M, Battaglini M, Borgogni F, Bossini L, Calossi S, Marino D, Vatti G, Pieraccini F, Federico A, Castrogiovanni P, De Stefano N (2012) Evidence of diffuse damage in frontal and occipital cortex in the brain of patients with post-traumatic stress disorder. Neurol Sci 33:59–68.  https://doi.org/10.1007/s10072-011-0659-4 CrossRefPubMedGoogle Scholar
  26. 26.
    Cheng B, Huang X, Li S, Hu X, Luo Y, Wang X, Yang X, Qiu C, Yang Y, Zhang W, Bi F, Roberts N, Gong Q (2015) Gray matter alterations in post-traumatic stress disorder, obsessive–compulsive disorder, and social anxiety disorder. Front Behav Neurosci 9:219.  https://doi.org/10.3389/fnbeh.2015.00219 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li H-J, Sun J-Z, Zhang Q-L, Wei D-T, Li W-F, Jackson T, Hitchman G, Qiu J (2014) Neuroanatomical differences between men and women in help-seeking coping strategy. Sci Rep 4:5700.  https://doi.org/10.1038/srep05700 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Morey RA, Haswell CC, Hooper SR, De Bellis MD (2016) Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology 41(3):791–801.  https://doi.org/10.1038/npp.2015.205 CrossRefPubMedGoogle Scholar
  29. 29.
    Wrocklage KM, Averill LA, Scott JC, Averill CL, Schweinsburg B, Trejo M, Roy A, Weisser V, Kelly C, Martini B, Harpaz-Rotem I, Southwick SM, Krystal JH, Abdallah CG, Haven W, States U (2017) Cortical thickness reduction in combat exposed U.S. veterans with and without PTSD. Eur Neuropsychopharmacol 27(5):515–525.  https://doi.org/10.1016/j.euroneuro.2017.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, Domschke K, Hohoff C, Ohrmann P, Bauer J, Lindner C, Postert C, Konrad C, Arolt V, Heindel W, Suslow T (2012) Limbic scars: long-term consequences of childhood magnetic resonance imaging. Biol Psychiatry 71(4):286–293.  https://doi.org/10.1016/j.biopsych.2011.10.021 CrossRefPubMedGoogle Scholar
  31. 31.
    Burgmer M, Rehbein MA, Wrenger M, Kandil J, Heuft G, Steinberg C, Pfleiderer B, Junghöfer M (2013) Early affective processing in patients with acute posttraumatic stress disorder: magnetoencephalographic correlates. PLoS One 8(8):e71289.  https://doi.org/10.1371/journal.pone.0071289 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sekiguchi A, Sugiura M, Taki Y, Kotozaki Y, Nouchi R, Takeuchi H, Araki T, Hanawa S, Nakagawa S, Miyauchi CM, Sakuma A, Kawashima R (2013) Brain structural changes as vulnerability factors and acquired signs of post-earthquake stress. Mol Psychiatry 18(5):618–623.  https://doi.org/10.1038/mp.2012.51 CrossRefPubMedGoogle Scholar
  33. 33.
    Yamasue H, Kasai K, Iwanami A, Ohtani T, Yamada H, Abe O, Kuroki N, Fukuda R, Tochigi M, Furukawa S, Sadamatsu M, Sasaki T, Aoki S, Ohtomo K, Asukai N, Kato N (2003) Voxel-based analysis of MRI reveals anterior cingulate gray-matter volume reduction in posttraumatic stress disorder due to terrorism. Proc Natl Acad Sci USA 100(15):9039–9043.  https://doi.org/10.1073/pnas.1530467100 CrossRefPubMedGoogle Scholar
  34. 34.
    Rocha-Rego V, Pereira MG, Oliveira L, Mendlowicz MV, Fiszman A, Marques-Portella C, Berger W, Chu C, Joffily M, Moll J, Mari JJ, Figueira I, Volchan E (2012) Decreased premotor cortex volume in victims of urban violence with posttraumatic stress disorder. PLoS One 7(8):e42560.  https://doi.org/10.1371/journal.pone.0042560 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bryant RA, Felmingham KL, Kemp A, Das P, Hughes G, Peduto A, Williams L (2008) Amygdala and ventral anterior cingulate activation predicts treatment response to cognitive behaviour therapy for post-traumatic stress disorder. Psychol Med 38(4):555–561.  https://doi.org/10.1017/S0033291707002231 CrossRefPubMedGoogle Scholar
  36. 36.
    Jatzko A, Vogler C, Demirakca T, Ruf M, Malchow B, Falkai P, Braus DF, Ende G, Schmitt A (2013) Pattern and volume of the anterior cingulate cortex in chronic posttraumatic stress disorder (PTSD). Eur Arch Psychiatry Clin Neurosci 263:585–592.  https://doi.org/10.1007/s00406-013-0408-1 CrossRefPubMedGoogle Scholar
  37. 37.
    Dickie EW, Brunet A, Akerib V, Armony JL (2013) Anterior cingulate cortical thickness is a stable predictor of recovery from post-traumatic stress disorder. Psychol Med 43(3):645–653.  https://doi.org/10.1017/S0033291712001328 CrossRefPubMedGoogle Scholar
  38. 38.
    Corbo V, Clément M-H, Armony JL, Pruessner JC, Brunet A (2005) Size versus shape differences: contrasting voxel-based and volumetric analyses of the anterior cingulate cortex in individuals with acute posttraumatic stress disorder. Biol Psychiatry 58(2):119–124.  https://doi.org/10.1016/j.biopsych.2005.02.032 CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang Q, Zhuo C, Lang X, Li H, Qin W, Yu C (2014) Structural impairments of hippocampus in coal mine gas explosion-related posttraumatic stress disorder. PLoS One 9(7):e102042.  https://doi.org/10.1371/journal.pone.0102042 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Meng Y, Qiu C, Zhu H, Lama S, Lui S, Gong Q, Zhang W (2014) Anatomical deficits in adult posttraumatic stress disorder: a meta-analysis of voxel-based morphometry studies. Behav Brain Res 270:307–315.  https://doi.org/10.1016/j.bbr.2014.05.021 CrossRefPubMedGoogle Scholar
  41. 41.
    Golkar A, Lonsdorf TB, Olsson A, Lindstrom KM, Berrebi J, Fransson P, Schalling M, Ingvar M, Öhman A (2012) Distinct contributions of the dorsolateral prefrontal and orbitofrontal cortex during emotion regulation. PLoS One 7(11):e48107.  https://doi.org/10.1371/journal.pone.0048107 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL (2007) Amygdala-frontal connectivity during emotion regulation. Soc Cognit Affect Neurosci 2(4):303–312.  https://doi.org/10.1093/scan/nsm029 CrossRefGoogle Scholar
  43. 43.
    Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN (2008) Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59:1037–1050.  https://doi.org/10.1016/j.neuron.2008.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kanske P, Heissler J, Schönfelder S, Bongers A, Wessa M (2011) How to regulate emotion? Neural networks for reappraisal and distraction. Cereb Cortex 21:1379–1388.  https://doi.org/10.1093/cercor/bhq216 CrossRefPubMedGoogle Scholar
  45. 45.
    Lanius RA, Williamson PC, Hopper J, Densmore M, Boksman K, Gupta MA, Neufeld RWJ, Gati JS, Menon RS (2003) Recall of emotional states in posttraumatic stress disorder: an fMRI investigation. Biol Psychiatry 53(3):204–210.  https://doi.org/10.1016/S0006-3223(02)01466-X CrossRefPubMedGoogle Scholar
  46. 46.
    Scult MA, Knodt AR, Swartz JR, Brigidi BD, Hariri AR (2017) Thinking and feeling: individual differences in habitual emotion regulation and stress-related mood are associated with prefrontal executive control. Clin Psychol Sci 5(1):150–157.  https://doi.org/10.1177/2167702616654688 CrossRefPubMedGoogle Scholar
  47. 47.
    Zander T, Horr NK, Bolte A, Volz KG (2016) Intuitive decision making as a gradual process: investigating semantic intuition-based and priming-based decisions with fMRI. Brain Behav 6(1):e00420.  https://doi.org/10.1002/brb3.420 CrossRefPubMedGoogle Scholar
  48. 48.
    Arnsten AFT, Raskind MA, Taylor FB, Connor DF (2015) The effects of stress exposure on prefrontal cortex: translating basic research into successful treatments for post-traumatic stress disorder. Neurobiol Stress 1:89–99.  https://doi.org/10.1016/j.ynstr.2014.10.002 CrossRefPubMedGoogle Scholar
  49. 49.
    Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL (2007) Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry 62(5):446–454.  https://doi.org/10.1016/j.biopsych.2006.10.011 CrossRefPubMedGoogle Scholar
  50. 50.
    Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79.  https://doi.org/10.1196/annals.1364.007 CrossRefPubMedGoogle Scholar
  51. 51.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113.  https://doi.org/10.1016/0028-3932(71)90067-4 CrossRefPubMedGoogle Scholar
  52. 52.
    Bryant RA, Harvey AG, Dang ST, Sackville T (1998) Assessing acute stress disorder: psychometric properties of a structured clinical interview. Psychol Assess 10(3):215–220.  https://doi.org/10.1037/1040-3590.10.3.215 CrossRefGoogle Scholar
  53. 53.
    Cwik JC, Sartory G, Schürholt B, Knuppertz H, Seitz RJ (2014) Posterior midline activation during symptom provocation in acute stress disorder: an fMRI study. Front Psychiatry 5:49.  https://doi.org/10.3389/fpsyt.2014.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cwik JC, Sartory G, Nuyken M, Schürholt B, Seitz RJ (2017) Posterior and prefrontal contributions to the development of posttraumatic stress disorder symptom severity: an fMRI study of symptom provocation in acute stress disorder. Eur Arch Psychiatry Clin Neurosci 267(6):495–505.  https://doi.org/10.1007/s00406-016-0713-6 CrossRefPubMedGoogle Scholar
  55. 55.
    Elsesser K (1999) Interview zur Akuten Belastungsstörung; German version of Acute Stress Disorder Interview (ASDI). Universität Wuppertal, UnveröffentlichtGoogle Scholar
  56. 56.
    Blake DD (1994) Rationale and development of the Clinician-Administered PTSD Scales. PTSD Res Q 5(2):1–8Google Scholar
  57. 57.
    Blake DD, Weathers FW, Nagy LM, Kaloupek DG, Gusman FD, Charney DS, Keane TM (1995) The development of a Clinician-Administered PTSD Scale. J Trauma Stress 8(1):75–90.  https://doi.org/10.1007/BF02105408 CrossRefPubMedGoogle Scholar
  58. 58.
    Blake DD, Weathers FW, Nagy LM, Kaloupek DG, Charney DS, Keane TM (1998) Clinician-administered PTSD scale for DSM-IV. National Center for Posttraumatic Stress Disorder-Behavioral Science Division, BostonGoogle Scholar
  59. 59.
    Schnyder U, Moergeli H (2002) German version of clinician-administered PTSD Scale. J Trauma Stress 15(6):487–492.  https://doi.org/10.1023/A:1020922023090 CrossRefPubMedGoogle Scholar
  60. 60.
    Weathers FW, Ruscio AM, Keane TM (1999) Psychometric properties of nine scoring rules for the Clinician-Administered Posttraumatic Stress Disorder Scale. Psychol Assess 11(2):124–133.  https://doi.org/10.1037//1040-3590.11.2.124 CrossRefGoogle Scholar
  61. 61.
    Margraf J (1994) Diagnostisches Kurz-Interview psychischer Störungen (Mini-DIPS). Beltz, WeinheimCrossRefGoogle Scholar
  62. 62.
    Margraf J, Cwik JC (2017) Mini-DIPS Open Access: Diagnostisches Kurzinterview bei psychischen Störungen, 2nd edn. Forschungs- und Behandlungszentrum für psychische Gesundheit, Ruhr-Universität Bochum, BochumGoogle Scholar
  63. 63.
    Margraf J, Cwik JC, Pflug V, Schneider S (2017) Strukturierte klinische Interviews zur Erfassung psychischer Störungen über die Lebensspanne: gütekriterien und Weiterentwicklungen der DIPS-Verfahren. Zeitschrift für Klinische Psychologie und Psychotherapie 46(3):176–186.  https://doi.org/10.1026/1616-3443/a000430 CrossRefGoogle Scholar
  64. 64.
    Margraf J, Cwik JC, Suppiger A, Schneider S (2017) Diagnostisches Interview bei Psychischen Störungen - Open Access (DIPS-OA), 5th edn. Forschungs- und Behandlungszentrum für psychische Gesundheit, Ruhr-Universität Bochum, Bochum.  https://doi.org/10.13154/rub.100.89 CrossRefGoogle Scholar
  65. 65.
    In-Albon T, Suppiger A, Schlup B, Wendler S, Margraf J, Schneider S (2008) Validität des Diagnostischen Interviews bei Psychischen Störungen (DIPS für DSM-IV-TR). Zeitschrift für Klinische Psychologie und Psychotherapie 37(1):33–42.  https://doi.org/10.1026/1616-3443.37.1.33 CrossRefGoogle Scholar
  66. 66.
    Rajapakse JC, Giedd JN, Rapoport JL (1997) Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans Med Imaging 16(2):176–186CrossRefPubMedGoogle Scholar
  67. 67.
    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI signle-subject brain. NeuroImage 15:273–289CrossRefPubMedGoogle Scholar
  68. 68.
    Borgwardt S, Radua J, Mechelli A, Fusar-Poli P (2012) Why are psychiatric imaging methods clinically unreliable? Conclusions and practical guidelines for authors, editors and reviewers. Behav Brain Funct 8:46.  https://doi.org/10.1186/1744-9081-8-46 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Braun AR, Guillemin A, Hosey L, Varga M (2001) The neural organization of discourse: an H215O-PET study of narrative production in English and American sign language. Brain 124(10):2028–2044.  https://doi.org/10.1093/brain/124.10.2028 CrossRefPubMedGoogle Scholar
  70. 70.
    Kirschen MP, Chen SHA, Desmond JE (2010) Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study. Behav Neurol 23(1–2):51–63.  https://doi.org/10.3233/BEN-2010-0266 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Crottaz-Herbette S, Anagnoson RT, Menon V (2004) Modality effects in verbal working memory: differential prefrontal and parietal responses to auditory and visual stimuli. NeuroImage 21(1):340–351.  https://doi.org/10.1016/j.neuroimage.2003.09.019 CrossRefPubMedGoogle Scholar
  72. 72.
    Goldin PR, McRae K, Ramel W, Gross JJ (2008) The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol Psychiat 63(6):577–586.  https://doi.org/10.1016/j.biopsych.2007.05.031 CrossRefPubMedGoogle Scholar
  73. 73.
    Bourne C, Mackay CE, Holmes EA (2013) The neural basis of flashback formation: the impact of viewing trauma. Psychol Med 43(7):1521–1532.  https://doi.org/10.1017/S0033291712002358 CrossRefPubMedGoogle Scholar
  74. 74.
    Lee TMC, Lee TMY, Raine A, Chan CCH (2010) Lying about the valence of affective pictures: an fMRI study. PLoS One 5(8):e12291–e12291.  https://doi.org/10.1371/journal.pone.0012291 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Sussman D, Pang EW, Jetly R, Dunkley BT, Taylor MJ (2016) Neuroanatomical features in soldiers with post-traumatic stress disorder. BMC Neurosci 17:13.  https://doi.org/10.1186/s12868-016-0247-x CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Tomoda A, Navalta CP, Polcari A, Sadato N, Teicher MH (2009) Childhood sexual abuse is associated with reduced gray matter volume in visual cortex of young women. Biol Psychiatry 66(7):642–648.  https://doi.org/10.1016/j.biopsych.2009.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Nardo D, Högberg G, Lanius RA, Jacobsson H, Jonsson C, Hällström T, Pagani M (2013) Gray matter volume alterations related to trait dissociation in PTSD and traumatized controls. Acta Psychiatry Scand 128(3):222–233.  https://doi.org/10.1111/acps.12026 CrossRefGoogle Scholar
  78. 78.
    Lanius RA, Bluhm R, Lanius U, Pain C (2006) A review of neuroimaging studies in PTSD: heterogeneity of response to symptom provocation. J Psychiatry Res 40(8):709–729.  https://doi.org/10.1016/j.jpsychires.2005.07.007 CrossRefGoogle Scholar
  79. 79.
    Brewin CR, Dalgleish T, Joseph S (1996) A dual representation theory of posttraumatic stress disorder. Psychol Rev 103(4):670–686.  https://doi.org/10.1037/0033-295X.103.4.670 CrossRefPubMedGoogle Scholar
  80. 80.
    Brewin CR (2001) A cognitive neuroscience account of posttraumatic stress disorder and its treatment. Behav Res Ther 39(4):373–393CrossRefPubMedGoogle Scholar
  81. 81.
    Brewin CR, Gregory JD, Lipton M, Burgess N (2010) Intrusive images in psychological disorders: characteristics, neural mechanisms, and treatment implications. Psychol Rev 117(1):210–232.  https://doi.org/10.1037/a0018113 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    O’Doherty DCM, Tickell A, Ryder W, Chan C, Hermens DF, Bennett MR, Lagopoulos J (2017) Neuroimaging frontal and subcortical grey matter reductions in PTSD. Psychiatry Res Neuroimag 266:1–9.  https://doi.org/10.1016/j.pscychresns.2017.05.008 CrossRefGoogle Scholar
  83. 83.
    Kasai K, Yamasue H, Gilbertson MW, Shenton ME, Rauch SL, Pitman RK (2008) Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biol Psychiat 63(6):550–556.  https://doi.org/10.1016/j.biopsych.2007.06.022 CrossRefPubMedGoogle Scholar
  84. 84.
    Eckart C, Stoppel C, Kaufmann J, Tempelmann C, Hinrichs H, Elbert T, Heinze H-J, Kolassa I-T (2011) Structural alterations in lateral prefrontal, parietal and posterior midline regions of men with chronic posttraumatic stress disorder. Journal of Psychiatry and Neuroscience Neuroscience 36(3):176–186.  https://doi.org/10.1503/jpn.100010 CrossRefGoogle Scholar
  85. 85.
    Tomoda A, Suzuki H, Rabi K, Sheu Y-S, Polcari A, Teicher MH (2010) Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment. NeuroImage 47(Suppl 2):T66–T71.  https://doi.org/10.1016/j.neuroimage.2009.03.005 CrossRefGoogle Scholar
  86. 86.
    Zhang J, Tan Q, Yin H, Zhang X, Huan Y, Tang L, Wang H, Xu J, Li L (2011) Decreased gray matter volume in the left hippocampus and bilateral calcarine cortex in coal mine flood disaster survivors with recent onset PTSD. Psychiatry Res Neuroimag 192(2):84–90.  https://doi.org/10.1016/j.pscychresns.2010.09.001 CrossRefGoogle Scholar
  87. 87.
    Cremers HR, Wager TD, Yarkoni T (2017) The relation between statistical power and inference in fMRI. PLoS One 12(11):e0184923.  https://doi.org/10.1371/journal.pone.0184923 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Szabó C, Kelemen O, Levy-Gigi E, Kéri S (2015) Acute response to psychological trauma and subsequent recovery: no changes in brain structure. Psychiatry Res Neuroimag 231(3):269–272.  https://doi.org/10.1016/j.pscychresns.2015.01.005 CrossRefGoogle Scholar
  89. 89.
    Meng L, Jiang J, Jin C, Liu J, Zhao Y, Wang W, Li K, Gong Q (2016) Trauma-specific grey matter alterations in PTSD. Sci Rep 6:33748.  https://doi.org/10.1038/srep33748 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kroes MCW, Whalley MG, Rugg MD, Brewin CR (2011) Association between flashbacks and structural brain abnormalities in posttraumatic stress disorder. Eur Psychiatry 26(8):525–531.  https://doi.org/10.1016/j.eurpsy.2011.03.002 CrossRefPubMedGoogle Scholar
  91. 91.
    Li L, Wu M, Liao Y, Ouyang L, Du M, Lei D, Chen L, Yao L, Huang X, Gong Q (2014) Grey matter reduction associated with posttraumatic stress disorder and traumatic stress. Neurosci Biobehav Rev 43(37):163–172.  https://doi.org/10.1016/j.neubiorev.2014.04.003 CrossRefPubMedGoogle Scholar
  92. 92.
    Qin P, Northoff G (2011) How is our self related to midline regions and the default-mode network? NeuroImage 57(3):1221–1233.  https://doi.org/10.1016/j.neuroimage.2011.05.028 CrossRefPubMedGoogle Scholar
  93. 93.
    Abu-Akel A, Shamay-Tsoory S (2011) Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia 49(11):2971–2984.  https://doi.org/10.1016/j.neuropsychologia.2011.07.012 CrossRefPubMedGoogle Scholar
  94. 94.
    Feng S, Ye X, Mao L, Yue X (2014) The activation of theory of mind network differentiates between point-to-self and point-to-other verbal jokes: an fMRI study. Neurosci Lett 564:32–36.  https://doi.org/10.1016/j.neulet.2014.01.059 CrossRefPubMedGoogle Scholar
  95. 95.
    Schurz M, Radua J, Aichhorn M, Richlan F, Perner J (2014) Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev 42:9–34.  https://doi.org/10.1016/j.neubiorev.2014.01.009 CrossRefPubMedGoogle Scholar
  96. 96.
    Calabro FJ, Vaina LM (2012) Interaction of cortical networks mediating object motion detection by moving observers. Exp Brain Res 221(2):177–189.  https://doi.org/10.1007/s00221-012-3159-8 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Gilaie-Dotan S, Bentin S, Harel M, Rees G, Saygin AP (2011) Normal form from biological motion despite impaired ventral stream function. Neuropsychologia 49(5):1033–1043.  https://doi.org/10.1016/j.neuropsychologia.2011.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Zachariou V, Klatzky R, Behrmann M (2014) Ventral and dorsal visual stream contributions to the perception of object shape and object location. J Cognit Neurosci 26(1):189–209.  https://doi.org/10.1162/jocn_a_00475 CrossRefGoogle Scholar
  99. 99.
    Gilaie-Dotan S, Kanai R, Bahrami B, Rees G, Saygin AP (2013) Neuroanatomical correlates of biological motion detection. Neuropsychologia 51(3):457–463.  https://doi.org/10.1016/j.neuropsychologia.2012.11.027 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Reeder RR, Perini F, Peelen MV (2015) Preparatory activity in posterior temporal cortex causally contributes to object detection in scenes. J Cognit Neurosci 27(11):2117–2125.  https://doi.org/10.1162/jocn_a_00845 CrossRefGoogle Scholar
  101. 101.
    Jatzko A, Rothenhöfer S, Schmitt A, Gaser C, Demirakca T, Weber-Fahr W, Wessa M, Magnotta V, Braus DF (2006) Hippocampal volume in chronic posttraumatic stress disorder (PTSD): MRI study using two different evaluation methods. J Affect Disord 94(1–3):121–126.  https://doi.org/10.1016/j.jad.2006.03.010 CrossRefPubMedGoogle Scholar
  102. 102.
    Wignall EL, Dickson JM, Vaughan P, Farrow TFD, Wilkinson ID, Hunter MD, Woodruff PWR (2004) Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder. Biol Psychiat 56:832–836.  https://doi.org/10.1016/j.biopsych.2004.09.015 CrossRefPubMedGoogle Scholar
  103. 103.
    Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, Gilbertson MW, Orr SP, Kikinis R, Jolesz FA, McCarley RW, Pitman RK (1996) Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiat 40(11):1091–1099.  https://doi.org/10.1016/S0006-3223(96)00229-6 CrossRefPubMedGoogle Scholar
  104. 104.
    Letizia B, Maricla T, Sara C, Alessia L, Riccardo PN, Rosita G, Gianpaolo V, Fulvio P, Paolo C (2008) Magnetic resonance imaging volumes of the hippocampus in drug-naive patients with post-traumatic stress disorder without comorbidity conditions. J Psychiatr Res 42(9):752–762.  https://doi.org/10.1016/j.jpsychires.2007.08.004 CrossRefGoogle Scholar
  105. 105.
    Kanazawa Y, Nakamura K, Ishii T, Aso T, Yamazaki H, Omori K (2017) Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network. PLoS One 12(9):e0177599–e0177599.  https://doi.org/10.1371/journal.pone.0177599 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Labudda K, Mertens M, Janszky J, Bien CG, Woermann FG (2012) Atypical language lateralisation associated with right fronto-temporal grey matter increases—a combined fMRI and VBM study in left-sided mesial temporal lobe epilepsy patients. NeuroImage 59(1):728–737.  https://doi.org/10.1016/j.neuroimage.2011.07.053 CrossRefPubMedGoogle Scholar
  107. 107.
    Dole M, Meunier F, Hoen M (2013) Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry. PLoS One 8(10):1–14.  https://doi.org/10.1371/journal.pone.0076823 CrossRefGoogle Scholar
  108. 108.
    Haagsma JA, Polinder S, Olff M, Toet H, Bonsel GJ, van Beeck EF (2012) Posttraumatic stress symptoms and health-related quality of life: a two year follow up study of injury treated at the emergency department. BMC Psychiatry 12:1.  https://doi.org/10.1186/1471-244X-12-1 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Baldaçara L, Jackowski AP, Schoedl A, Pupo M, Andreoli SB, Mello MF, Lacerda ALT, Mari JJ, Bressan RA (2011) Reduced cerebellar left hemisphere and vermal volume in adults with PTSD from a community sample. J Psychiatry Res 45(12):1627–1633.  https://doi.org/10.1016/j.jpsychires.2011.07.013 CrossRefGoogle Scholar
  110. 110.
    Brewin CR, Holmes EA (2003) Psychological theories of posttraumatic stress disorder. Clin Psychol Rev 23(3):339–376.  https://doi.org/10.1016/S0272-7358(03)00033-3 CrossRefPubMedGoogle Scholar
  111. 111.
    Brewin CR, Burgess N (2014) Contextualisation in the revised dual representation theory of PTSD: a response to Pearson and colleagues. J Behav Ther Exp Psychiatry 45(1):217–219.  https://doi.org/10.1016/j.jbtep.2013.07.011 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    David SP, Ware JJ, Chu IM, Loftus PD, Fusar-Poli P, Radua J, Munafò MR, Ioannidis JPA (2013) Potential reporting bias in fMRI studies of the brain. PLoS One 8(7):e70104.  https://doi.org/10.1371/journal.pone.0070104 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Kuester A, Köhler K, Ehring T, Knaevelsrud C, Kober L, Krüger-Gottschalk A, Schäfer I, Schellong J, Wesemann U, Rau H (2017) Comparison of DSM-5 and proposed ICD-11 criteria for PTSD with DSM-IV and ICD-10: changes in PTSD prevalence in military. Eur J Psychotraumatol 8(1):1386988.  https://doi.org/10.1080/20008198.2017.1386988 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Gong Q, Li L, Tognin S, Wu Q, Pettersson-Yeo W, Lui S, Huang X, Marquand AF, Mechelli A (2014) Using structural neuroanatomy to identify trauma survivors with and without post-traumatic stress disorder at the individual level. Psychol Med 44(1):195–203.  https://doi.org/10.1017/S0033291713000561 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical Psychology and Psychotherapy, Faculty of Human SciencesUniversität zu KölnCologneGermany
  2. 2.Faculty of Psychology, Mental Health Research and Treatment CenterRuhr-Universität BochumBochumGermany
  3. 3.Department of Psychology and PsychotherapyUniversity Witten/HerdeckeWittenGermany
  4. 4.Department of Neurology, Center for Neurology and NeuropsychiatryHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  5. 5.Department of Psychosomatic Medicine and Psychotherapy, LWL University HospitalRuhr-Universität BochumBochumGermany
  6. 6.Department of Clinical Psychology and Psychotherapy, School of Human and Social SciencesBergische Universität WuppertalWuppertalGermany

Personalised recommendations