Advertisement

White matter microstructure in schizophrenia patients with a history of violence

  • Natalia Tesli
  • Lars T. Westlye
  • Guttorm B. Storvestre
  • Tiril P. Gurholt
  • Ingrid Agartz
  • Ingrid Melle
  • Ole A. Andreassen
  • Unn K. HaukvikEmail author
Original Paper
  • 47 Downloads

Abstract

Schizophrenia (SCZ) is associated with increased risk of violence compared to the general population. Neuroimaging research suggests SCZ to be a disorder of disrupted connectivity, with diffusion tensor imaging (DTI) indicating white matter (WM) abnormalities. It has been hypothesized that SCZ patients with a history of violence (SCZ-V) have brain abnormalities distinguishing them from SCZ patients with no history of violence (SCZ-NV). Yet, a thorough investigation of the neurobiological underpinnings of state and trait measures of violence and aggression in SCZ derived from DTI indices is lacking. Using tract-based spatial statistics, we compared DTI-derived microstructural indices: fractional anisotropy (FA), mean, axial (AD) and radial diffusivity across the brain; (1) between SCZ-V (history of murder, attempted murder, or severe assault towards other people, n = 24), SCZ-NV (n = 52) and healthy controls (HC, n = 94), and (2) associations with current aggression scores among both SCZ groups. Then, hypothesis-driven region of interest analyses of the uncinate fasciculus and clinical characteristics including medication use were performed. SCZ-V and SCZ-NV showed decreased FA and AD in widespread regions compared to HC. There were no significant differences on any DTI-based measures between SCZ-V and SCZ-NV, and no significant associations between state or trait measures of aggression and any of the DTI metrics in the ROI analyses. The DTI-derived WM differences between SCZ and HC are in line with previous findings, but the results do not support the hypothesis of specific brain WM microstructural correlates of violence or aggression in SCZ.

Keywords

Diffusion tensor imaging Schizophrenia Violence Aggression Uncinate fasciculus 

Notes

Acknowledgements

This work was funded by the Research Council of Norway Grant #223273, the K.G. Jebsen Foundation, and the South Eastern Norway Health Authorities Grant #2016044.

Compliance with ethical standards 

Conflict of interest

All authors report no conflict of interests.

Ethical approval

All procedures were in accordance with the ethical standards of the institution, approved by the Norwegian regional comitte for ethics in medical research, and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Supplementary material

406_2019_988_MOESM1_ESM.docx (86 kb)
Supplementary material 1 (DOCX 85 KB)

References

  1. 1.
    Arseneault L, Moffitt TE, Caspi A, Taylor PJ, Silva PA (2000) Mental disorders and violence in a total birth cohort: results from the Dunedin study. Arch Gen Psychiatry 57:979–986CrossRefGoogle Scholar
  2. 2.
    Fazel S, Gulati G, Linsell L, Geddes JR, Grann M (2009) Schizophrenia and violence: systematic review and meta-analysis. PLoS Med 6:e1000120CrossRefGoogle Scholar
  3. 3.
    Fleischman A, Werbeloff N, Yoffe R, Davidson M, Weiser M (2014) Schizophrenia and violent crime: a population-based study. Psychol Med 44:3051–3057CrossRefGoogle Scholar
  4. 4.
    Witt K, Lichtenstein P, Fazel S (2015) Improving risk assessment in schizophrenia: epidemiological investigation of criminal history factors. Br J Psychiatry 206:424–430CrossRefGoogle Scholar
  5. 5.
    Fazel S, Wolf A, Palm C, Lichtenstein P (2014) Violent crime, suicide, and premature mortality in patients with schizophrenia and related disorders: a 38-year total population study in Sweden. Lancet Psychiatry 1:44–54CrossRefGoogle Scholar
  6. 6.
    Weiss EM (2012) Neuroimaging and neurocognitive correlates of aggression and violence in schizophrenia. Scientifica 2012:158646CrossRefGoogle Scholar
  7. 7.
    Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480CrossRefGoogle Scholar
  8. 8.
    Kubicki M, Shenton ME (2014) Diffusion tensor imaging findings and their implications in schizophrenia. Curr Opin Psychiatry 27:179–184CrossRefGoogle Scholar
  9. 9.
    Ellison-Wright I, Bullmore E (2009) Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 108:3–10CrossRefGoogle Scholar
  10. 10.
    Friston KJ (1998) The disconnection hypothesis. Schizophr Res 30:115–125CrossRefGoogle Scholar
  11. 11.
    Karlsgodt KH (2016) Diffusion imaging of white matter in schizophrenia: progress and future directions. Biol Psychiatry Cogn Neurosci Neuroimaging 1:209–217CrossRefGoogle Scholar
  12. 12.
    Wheeler AL, Voineskos AN (2014) A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci 8:653CrossRefGoogle Scholar
  13. 13.
    Zalesky A, Fornito A, Seal ML, Cocchi L, Westin CF, Bullmore ET et al (2011) Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry 69:80–89CrossRefGoogle Scholar
  14. 14.
    Peters BD, Karlsgodt KH (2015) White matter development in the early stages of psychosis. Schizophr Res 161:61–69CrossRefGoogle Scholar
  15. 15.
    Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C et al (2018) Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry 23:1261–1269CrossRefGoogle Scholar
  16. 16.
    Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4:316–329CrossRefGoogle Scholar
  17. 17.
    Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17:1429–1436CrossRefGoogle Scholar
  18. 18.
    Dolan MC, Fullam RS (2009) Psychopathy and functional magnetic resonance imaging blood oxygenation level-dependent responses to emotional faces in violent patients with schizophrenia. Biol Psychiatry 66:570–577CrossRefGoogle Scholar
  19. 19.
    Joyal CC, Putkonen A, Mancini-Marie A, Hodgins S, Kononen M, Boulay L et al (2007) Violent persons with schizophrenia and comorbid disorders: a functional magnetic resonance imaging study. Schizophr Res 91:97–102CrossRefGoogle Scholar
  20. 20.
    Kumari V, Barkataki I, Goswami S, Flora S, Das M, Taylor P (2009) Dysfunctional, but not functional, impulsivity is associated with a history of seriously violent behaviour and reduced orbitofrontal and hippocampal volumes in schizophrenia. Psychiatry Res 173:39–44CrossRefGoogle Scholar
  21. 21.
    Hoptman MJ, Volavka J, Johnson G, Weiss E, Bilder RM, Lim KO (2002) Frontal white matter microstructure, aggression, and impulsivity in men with schizophrenia: a preliminary study. Biol Psychiatry 52:9–14CrossRefGoogle Scholar
  22. 22.
    Hoptman MJ, Ardekani BA, Butler PD, Nierenberg J, Javitt DC, Lim KO (2004) DTI and impulsivity in schizophrenia: a first voxelwise correlational analysis. Neuroreport 15:2467–2470CrossRefGoogle Scholar
  23. 23.
    Fullam R, Dolan M (2006) Emotional information processing in violent patients with schizophrenia: association with psychopathy and symptomatology. Psychiatry Res 141:29–37CrossRefGoogle Scholar
  24. 24.
    Hoppenbrouwers SS, Nazeri A, de Jesus DR, Stirpe T, Felsky D, Schutter DJ et al (2013) White matter deficits in psychopathic offenders and correlation with factor structure. PLoS One 8:e72375CrossRefGoogle Scholar
  25. 25.
    Jiang W, Shi F, Liu H, Li G, Ding Z, Shen H et al (2017) Reduced white matter integrity in antisocial personality disorder: a diffusion tensor imaging study. Sci Rep 7:43002CrossRefGoogle Scholar
  26. 26.
    Sundram F, Deeley Q, Sarkar S, Daly E, Latham R, Craig M et al (2012) White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder. Cortex 48:216–229CrossRefGoogle Scholar
  27. 27.
    Wolf RC, Pujara MS, Motzkin JC, Newman JP, Kiehl KA, Decety J et al (2015) Interpersonal traits of psychopathy linked to reduced integrity of the uncinate fasciculus. Hum Brain Mapp 36:4202–4209CrossRefGoogle Scholar
  28. 28.
    Blair RJ (2008) The amygdala and ventromedial prefrontal cortex: functional contributions and dysfunction in psychopathy. Philos Trans R Soc Lond B Biol Sci 363:2557–2565CrossRefGoogle Scholar
  29. 29.
    Waller R, Dotterer HL, Murray L, Maxwell AM, Hyde LW (2017) White-matter tract abnormalities and antisocial behavior: a systematic review of diffusion tensor imaging studies across development. Neuroimage Clin 14:201–215CrossRefGoogle Scholar
  30. 30.
    Monahan J, Steadman HJ, Appelbaum PS, Robbins PC, Mulvey EP, Silver E et al (2000) Developing a clinically useful actuarial tool for assessing violence risk. Br J Psychiatry 176:312–319CrossRefGoogle Scholar
  31. 31.
    Spitzer RL, Williams JB, Gibbon M, First MB (1992) The structured clinical interview for DSM-III-R (SCID). I: History, rationale, and description. Arch Gen Psychiatry 49:624–629CrossRefGoogle Scholar
  32. 32.
    Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276CrossRefGoogle Scholar
  33. 33.
    Montoya A, Valladares A, Lizan L, San L, Escobar R, Paz S (2011) Validation of the Excited Component of the Positive and Negative Syndrome Scale (PANSS-EC) in a naturalistic sample of 278 patients with acute psychosis and agitation in a psychiatric emergency room. Health Qual Life Outcomes 9:18CrossRefGoogle Scholar
  34. 34.
    Spitzer RL, Williams JB, Kroenke K, Linzer M, deGruy FV 3rd, Hahn SR et al (1994) Utility of a new procedure for diagnosing mental disorders in primary care. The PRIME-MD 1000 study. JAMA 272:1749–1756CrossRefGoogle Scholar
  35. 35.
    Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. NeuroImage 62:782–790CrossRefGoogle Scholar
  36. 36.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1:S208-219Google Scholar
  37. 37.
    Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T et al (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186CrossRefGoogle Scholar
  38. 38.
    Andersson JL, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20:870–888CrossRefGoogle Scholar
  39. 39.
    Andersson JLR, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125:1063–1078CrossRefGoogle Scholar
  40. 40.
    Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN (2016) Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 141:556–572CrossRefGoogle Scholar
  41. 41.
    Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906CrossRefGoogle Scholar
  42. 42.
    Basser PJ, Pierpaoli C (2011) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson 213:560–570CrossRefGoogle Scholar
  43. 43.
    Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505CrossRefGoogle Scholar
  44. 44.
    Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841CrossRefGoogle Scholar
  45. 45.
    Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS et al (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39:336–347CrossRefGoogle Scholar
  46. 46.
    Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644CrossRefGoogle Scholar
  47. 47.
    Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25CrossRefGoogle Scholar
  48. 48.
    Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the general linear model. Neuroimage 92:381–397CrossRefGoogle Scholar
  49. 49.
    Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83–98CrossRefGoogle Scholar
  50. 50.
    Friston K, Brown HR, Siemerkus J, Stephan KE (2016) The dysconnection hypothesis (2016). Schizophr Res 176:83–94CrossRefGoogle Scholar
  51. 51.
    Tonnesen S, Kaufmann T, Doan NT, Alnaes D, Cordova-Palomera A, Meer DV et al (2018) White matter aberrations and age-related trajectories in patients with schizophrenia and bipolar disorder revealed by diffusion tensor imaging. Sci Rep 8:14129CrossRefGoogle Scholar
  52. 52.
    Ozcelik-Eroglu E, Ertugrul A, Oguz KK, Has AC, Karahan S, Yazici MK (2014) Effect of clozapine on white matter integrity in patients with schizophrenia: a diffusion tensor imaging study. Psychiatry Res 223:226–235CrossRefGoogle Scholar
  53. 53.
    Ebdrup BH, Raghava JM, Nielsen MO, Rostrup E, Glenthoj B (2016) Frontal fasciculi and psychotic symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of selective dopamine D2/3 receptor blockade. J Psychiatry Neurosci 41:133–141CrossRefGoogle Scholar
  54. 54.
    Clark KA, Nuechterlein KH, Asarnow RF, Hamilton LS, Phillips OR, Hageman NS et al (2011) Mean diffusivity and fractional anisotropy as indicators of disease and genetic liability to schizophrenia. J Psychiatr Res 45:980–988CrossRefGoogle Scholar
  55. 55.
    Barratt ES, Felthous AR (2003) Impulsive versus premeditated aggression: implications for mens rea decisions. Behav Sci Law 21:619–630CrossRefGoogle Scholar
  56. 56.
    Stahl SM (2014) Deconstructing violence as a medical syndrome: mapping psychotic, impulsive, and predatory subtypes to malfunctioning brain circuits. CNS Spectr 19:357–365CrossRefGoogle Scholar
  57. 57.
    Hyde LW, Shaw DS, Hariri AR (2013) Understanding youth antisocial behavior using neuroscience through a developmental psychopathology lens: review, integration, and directions for research. Dev Rev 33Google Scholar
  58. 58.
    Yang Y, Raine A (2009) Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res 174:81–88CrossRefGoogle Scholar
  59. 59.
    Coccaro EF, Sripada CS, Yanowitch RN, Phan KL (2011) Corticolimbic function in impulsive aggressive behavior. Biol Psychiatry 69:1153–1159CrossRefGoogle Scholar
  60. 60.
    Anderson NE, Kiehl KA (2014) Psychopathy and aggression: when paralimbic dysfunction leads to violence. Curr Top Behav Neurosci 17:369–393CrossRefGoogle Scholar
  61. 61.
    Hoptman MJ (2015) Impulsivity and aggression in schizophrenia: a neural circuitry perspective with implications for treatment. CNS Spectr 20:280–286CrossRefGoogle Scholar
  62. 62.
    Rosell DR, Siever LJ (2015) The neurobiology of aggression and violence. CNS Spectr 20:254–279CrossRefGoogle Scholar
  63. 63.
    Coid JW, Ullrich S, Kallis C, Keers R, Barker D, Cowden F et al (2013) The relationship between delusions and violence: findings from the East London first episode psychosis study. JAMA Psychiatry 70:465–471CrossRefGoogle Scholar
  64. 64.
    Spalletta G, Piras F, Alex Rubino I, Caltagirone C, Fagioli S (2013) Fronto-thalamic volumetry markers of somatic delusions and hallucinations in schizophrenia. Psychiatry Res 212:54–64CrossRefGoogle Scholar
  65. 65.
    Whitford TJ, Lee SW, Oh JS, de Luis-Garcia R, Savadjiev P, Alvarado JL et al (2014) Localized abnormalities in the cingulum bundle in patients with schizophrenia: a diffusion tensor tractography study. Neuroimage Clin 5:93–99CrossRefGoogle Scholar
  66. 66.
    Fitzsimmons J, Schneiderman JS, Whitford TJ, Swisher T, Niznikiewicz MA, Pelavin PE et al (2014) Cingulum bundle diffusivity and delusions of reference in first episode and chronic schizophrenia. Psychiatry Res 224:124–132CrossRefGoogle Scholar
  67. 67.
    Whitford TJ, Kubicki M, Schneiderman JS, O’Donnell LJ, King R, Alvarado JL et al (2010) Corpus callosum abnormalities and their association with psychotic symptoms in patients with schizophrenia. Biol Psychiatry 68:70–77CrossRefGoogle Scholar
  68. 68.
    Zhu J, Zhuo C, Liu F, Xu L, Yu C (2016) Neural substrates underlying delusions in schizophrenia. Sci Rep 6:33857CrossRefGoogle Scholar
  69. 69.
    Kuroki N, Kashiwagi H, Ota M, Ishikawa M, Kunugi H, Sato N et al (2017) Brain structure differences among male schizophrenic patients with history of serious violent acts: an MRI voxel-based morphometric study. BMC Psychiatry 17:105CrossRefGoogle Scholar
  70. 70.
    Narayan VM, Narr KL, Kumari V, Woods RP, Thompson PM, Toga AW et al (2007) Regional cortical thinning in subjects with violent antisocial personality disorder or schizophrenia. Am J Psychiatry 164:1418–1427CrossRefGoogle Scholar
  71. 71.
    Yang Y, Raine A, Han CB, Schug RA, Toga AW, Narr KL (2010) Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Res 182:9–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical MedicineUniversity of OsloOsloNorway
  2. 2.NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and AddictionOslo University HospitalOsloNorway
  3. 3.Department of PsychologyUniversity of OsloOsloNorway
  4. 4.Department of PsychiatryOstfold Hospital TrustGraalumNorway
  5. 5.Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
  6. 6.Department of Adult Psychiatry, Institute of Clinical MedicineUniversity of OsloOsloNorway

Personalised recommendations