Advertisement

Analysis of KCNH2 and CACNA1C schizophrenia risk genes on EEG functional network modulation during an auditory odd-ball task

  • Alba LubeiroEmail author
  • Mar Fatjó-VilasEmail author
  • Maria Guardiola
  • Carmen Almodóvar
  • Javier Gomez-Pilar
  • Benjamin Cea-Cañas
  • Jesús Poza
  • Aitor Palomino
  • Marta Gómez-García
  • Jone Zugasti
  • Vicente Molina
Original Paper

Abstract

A deficit in task-related functional connectivity modulation from electroencephalogram (EEG) has been described in schizophrenia. The use of measures of neuronal connectivity as an intermediate phenotype may allow identifying genetic factors involved in these deficits, and therefore, establishing underlying pathophysiological mechanisms. Genes involved in neuronal excitability and previously associated with the risk for schizophrenia may be adequate candidates in relation to functional connectivity alterations in schizophrenia. The objective was to study the association of two genes of voltage-gated ion channels (CACNA1C and KCNH2) with the functional modulation of the cortical networks measured with EEG and graph-theory parameter during a cognitive task, both in individuals with schizophrenia and healthy controls. Both CACNA1C (rs1006737) and KCNH2 (rs3800779) were genotyped in 101 controls and 50 schizophrenia patients. Small-world index (SW) was calculated from EEG recorded during an odd-ball task in two different temporal windows (pre-stimulus and response). Modulation was defined as the difference in SW between both windows. Genetic, group and their interaction effects on SW in the pre-stimulus window and in modulation were evaluated using ANOVA. The CACNA1C genotype was not associated with SW properties. KCNH2 was significantly associated with SW modulation. Healthy subjects showed a positive SW modulation irrespective of the KCNH2 genotype, whereas within patients allele-related differences were observed. Patients carrying the KCNH2 risk allele (A) presented a negative SW modulation and non-carriers showed SW modulation similar to the healthy subjects. Our data suggest that KCNH2 genotype contributes to the efficient modulation of brain electrophysiological activity during a cognitive task in schizophrenia patients.

Keywords

Schizophrenia Electroencephalography Small-world CACNA1C KCNH2 

Notes

Acknowledgements

This work was supported by: (1) the Instituto Carlos III through the projects PI11/02708, PI11/02203, PI15/00299 and PI15/01420 (co-funded by the European Regional Development Fund/European Social Fund “Investing in your future”); (2) the Gerencia Regional de Salud de Castilla y León (GRS 932/A/14 and GRS 1134/A/15) grants; (3) Consejería de Educación de la Junta de Castilla y León (VA059U13, VA037U16); (4) European Commission and FEDER under Project “Análisis y correlación entre genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer” (Cooperation Program Interreg V-A Spain-Portugal POCTEP 2014–2020); (5) predoctoral fellowships to A. Lubeiro (Consejería de Educación Junta de Castilla y León and European Social Fund’) and to J. Gomez-Pilar (University of Valladolid); (6) a Sara Borrell contract to M Fatjó-Vilas (CD16/00264); (7) the Comissionat per a Universitats i Recerca del DIUE, of the Generalitat de Catalunya regional authorities (2017SGR1271).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

All participants provided written informed consent to participate in the study. It was approved by the ethical committee of the involved hospitals endorsed the study according to The Code of Ethics of the World Medical Association (Helsinki Declaration of 1975, as revised in 2008).

Supplementary material

406_2018_977_MOESM1_ESM.docx (29 kb)
Supplementary material 1 (DOCX 28 KB)

References

  1. 1.
    Braff DL, Freedman R, Schork NJ, Gottesman II (2007) Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr Bull 33:21–32.  https://doi.org/10.1093/schbul/sbl049 CrossRefPubMedGoogle Scholar
  2. 2.
    Owens EM, Bachman P, Glahn DC, Bearden CE (2016) Electrophysiological endophenotypes for schizophrenia. Harv Rev Psychiatry 24:129–147CrossRefGoogle Scholar
  3. 3.
    Turetsky BI, Dress EM, Braff DL et al (2015) The utility of P300 as a schizophrenia endophenotype and predictive biomarker: clinical and socio-demographic modulators in COGS-2. Schizophr Res 163:53–62.  https://doi.org/10.1016/j.schres.2014.09.024 CrossRefPubMedGoogle Scholar
  4. 4.
    Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113CrossRefGoogle Scholar
  5. 5.
    Borsboom D, Cramer AOJ, Schmittmann VD et al (2011) The small world of psychopathology. PLoS One  https://doi.org/10.1371/journal.pone.0027407 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gomez-Pilar J, Lubeiro A, Poza J et al (2017) Functional EEG network analysis in schizophrenia: evidence of larger segregation and deficit of modulation. Prog Neuro Psychopharmacol Biol Psychiatry 76:116–123.  https://doi.org/10.1016/j.pnpbp.2017.03.004 CrossRefGoogle Scholar
  7. 7.
    Micheloyannis S (2012) Graph-based network analysis in schizophrenia. World J Psychiatry 2:1.  https://doi.org/10.5498/wjp.v2.i1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shim M, Kim DW, Lee SH, Im CH (2014) Disruptions in small-world cortical functional connectivity network during an auditory oddball paradigm task in patients with schizophrenia. Schizophr Res 156:197–203.  https://doi.org/10.1016/j.schres.2014.04.012 CrossRefPubMedGoogle Scholar
  9. 9.
    Whitfield-Gabrieli S, Thermenos HW, Milanovic S et al (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci 106:1279–1284.  https://doi.org/10.1073/pnas.0809141106 CrossRefPubMedGoogle Scholar
  10. 10.
    Bassett DS, Bullmore ET, Meyer-Lindenberg A et al (2009) Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci USA 106:11747–11752.  https://doi.org/10.1073/pnas.0903641106 CrossRefPubMedGoogle Scholar
  11. 11.
    Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:e17.  https://doi.org/10.1371/journal.pcbi.0030017 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Buzsáki G (2006) Diversity of cortical functions. In: Rhythms of the brain. Oxford University Press, New York, pp 21–79CrossRefGoogle Scholar
  13. 13.
    Stam CJ, de Haan W, Daffertshofer A et al (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132:213–224.  https://doi.org/10.1093/brain/awn262 CrossRefPubMedGoogle Scholar
  14. 14.
    Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192.  https://doi.org/10.1001/archpsyc.60.12.1187 CrossRefPubMedGoogle Scholar
  15. 15.
    Walton E, Turner JA, Ehrlich S (2013) Neuroimaging as a potential biomarker to optimize psychiatric research and treatment. Int Rev Psychiatry 25:619–631.  https://doi.org/10.3109/09540261.2013.816659 CrossRefPubMedGoogle Scholar
  16. 16.
    Smit DJA, Posthuma D, Boomsma DI, De Geus EJC (2005) Heritability of background EEG across the power spectrum. Psychophysiology 42:691–697.  https://doi.org/10.1111/j.1469-8986.2005.00352.x CrossRefPubMedGoogle Scholar
  17. 17.
    Van Beijsterveldt CEM, Van Baal GCM (2002) Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biol Psychol 61:111–138CrossRefGoogle Scholar
  18. 18.
    De Geus EJC (2010) From genotype to EEG endophenotype: a route for post-genomic understanding of complex psychiatric disease? Genome Med 2(9):63CrossRefGoogle Scholar
  19. 19.
    Schutte NM, Hansell NK, de Geus EJC et al (2013) Heritability of resting state EEG functional connectivity patterns. Twin Res Hum Genet 16:962–969.  https://doi.org/10.1017/thg.2013.55 CrossRefPubMedGoogle Scholar
  20. 20.
    Smit DJA, Stam CJ, Posthuma D et al (2008) Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum Brain Mapp 29:1368–1378.  https://doi.org/10.1002/hbm.20468 CrossRefPubMedGoogle Scholar
  21. 21.
    Ripke S, Dushlaine CO, Chambert K et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet.  https://doi.org/10.1038/ng.2742.Genome-wide CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pardiñas AF, Holmans P, Pocklington AJ et al (2018) Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet 50:381–389.  https://doi.org/10.1038/s41588-018-0059-2 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Narayanan B, Soh P, Calhoun VD et al (2015) Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study. Transl Psychiatry  https://doi.org/10.1038/tp.2015.76 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Del Re EC, Bergen SE, Mesholam-Gately RI et al (2014) Analysis of schizophrenia-related genes and electrophysiological measures reveals ZNF804A association with amplitude of P300b elicited by novel sounds. Transl Psychiatry  https://doi.org/10.1038/tp.2013.117 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kang C, Yang X, Xu X et al (2012) Association study of neuregulin 1 gene polymorphisms with auditory p300 in schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet 159 B:422–428.  https://doi.org/10.1002/ajmg.b.32045 CrossRefGoogle Scholar
  26. 26.
    Striessnig J, Pinggera A, Kaur G et al (2014) L-type Ca2 + channels in heart and brain. Wiley Interdiscip Rev Membr Transp Signal 3:15–38.  https://doi.org/10.1002/wmts.102 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gomez-Ospina N, Tsuruta F, Barreto-Chang O et al (2006) The C terminus of the L-type voltage-gated calcium channel CaV1.2 encodes a transcription factor. Cell 127:591–606.  https://doi.org/10.1016/j.cell.2006.10.017 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Simms BA, Zamponi W (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24–45.  https://doi.org/10.1016/j.neuron.2014.03.016 CrossRefPubMedGoogle Scholar
  29. 29.
    Saliba RS, Gu Z, Yan Z, Moss SJ (2009) Blocking L-type voltage-gated Ca2 + channels with dihydropyridines reduces ??-aminobutyric acid type A receptor expression and synaptic inhibition. J Biol Chem 284:32544–32550.  https://doi.org/10.1074/jbc.M109.040071 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kabir ZD, Che A, Fischer DK et al (2017) Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2α. Mol Psychiatry 22:1096–1109.  https://doi.org/10.1038/mp.2017.124 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cross-Disorder Group of the Psychiatric Genomics Consortium C-DG of the PG (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379.  https://doi.org/10.1016/S0140-6736(12)62129-1 CrossRefGoogle Scholar
  32. 32.
    Ripke S, Neale BM, Corvin A et al (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427.  https://doi.org/10.1038/nature13595 CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Guan F, Zhang B, Yan T et al (2014) MIR137 gene and target gene CACNA1C of miR-137 contribute to schizophrenia susceptibility in Han Chinese. Schizophr Res 152:97–104.  https://doi.org/10.1016/j.schres.2013.11.004 CrossRefPubMedGoogle Scholar
  34. 34.
    He K, An Z, Wang Q et al (2014) CACNA1C, schizophrenia and major depressive disorder in the Han Chinese population. Br J Psychiatry 204:36–39.  https://doi.org/10.1192/bjp.bp.113.126979 CrossRefPubMedGoogle Scholar
  35. 35.
    Ivorra JL, Rivero O, Costas J et al (2014) Replication of previous genome-wide association studies of psychiatric diseases in a large schizophrenia case-control sample from Spain. Schizophr Res 159:107–113.  https://doi.org/10.1016/j.schres.2014.07.004 CrossRefPubMedGoogle Scholar
  36. 36.
    Nie F, Wang X, Zhao P et al (2015) Genetic analysis of SNPs in CACNA1C and ANK3 gene with schizophrenia: a comprehensive meta-analysis. Am J Med Genet Part B Neuropsychiatr Genet 168:637–648.  https://doi.org/10.1002/ajmg.b.32348 CrossRefGoogle Scholar
  37. 37.
    Bigos KL, Mattay VS, Callicott JH et al (2010) Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 67:939–945.  https://doi.org/10.1001/archgenpsychiatry.2010.96 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Green EK, Grozeva D, Jones I et al (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 15:1016–1022.  https://doi.org/10.1038/mp.2009.49 CrossRefPubMedGoogle Scholar
  39. 39.
    Nyegaard M, Demontis D, Foldager L et al (2010) CACNA1C (rs1006737) is associated with schizophrenia. Mol Psychiatry 15:119–121CrossRefGoogle Scholar
  40. 40.
    Wolf C, Mohr H, Schneider-Axmann T et al (2014) CACNA1C genotype explains interindividual differences in amygdala volume among patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 264:93–102.  https://doi.org/10.1007/s00406-013-0427-y CrossRefPubMedGoogle Scholar
  41. 41.
    Kempton MJ, Stahl D, Williams SCR, DeLisi LE (2010) Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophr Res 120:54–62.  https://doi.org/10.1016/j.schres.2010.03.036 CrossRefPubMedGoogle Scholar
  42. 42.
    Wang F, Mcintosh AM, He Y et al (2011) The association of genetic variation in CACNA1C with structure and function of a frontotemporal system. Bipolar Disord 13:696–700.  https://doi.org/10.1111/j.1399-5618.2011.00963.x CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lancaster TM, Foley S, Tansey KE et al (2016) CACNA1C risk variant is associated with increased amygdala volume. Eur Arch Psychiatry Clin Neurosci 266:269–275.  https://doi.org/10.1007/s00406-015-0609-x CrossRefPubMedGoogle Scholar
  44. 44.
    Huang L, Mo Y, Sun X et al (2016) The impact of CACNA1C allelic variation on regional gray matter volume in Chinese population. Am J Med Genet B Neuropsychiatr Genet 171B:396–401.  https://doi.org/10.1002/ajmg.b.32418 CrossRefPubMedGoogle Scholar
  45. 45.
    Erk S, Meyer-Lindenberg A, Schnell K et al (2010) Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch Gen Psychiatry 67:803–811.  https://doi.org/10.1001/archgenpsychiatry.2010.94 CrossRefPubMedGoogle Scholar
  46. 46.
    Paulus FM, Bedenbender J, Krach S et al (2014) Association of rs1006737 in CACNA1C with alterations in prefrontal activation and fronto-hippocampal connectivity. Hum Brain Mapp 35:1190–1200.  https://doi.org/10.1002/hbm.22244 CrossRefPubMedGoogle Scholar
  47. 47.
    Gurung R, Prata DP (2015) What is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review. Psychol Med 45:2461–2480CrossRefGoogle Scholar
  48. 48.
    Radua J, Surguladze SA, Marshall N et al (2013) The impact of CACNA1C allelic variation on effective connectivity during emotional processing in bipolar disorder. Mol Psychiatry 18:526–527CrossRefGoogle Scholar
  49. 49.
    Eckart N, Song Q, Yang R et al (2016) Functional characterization of schizophrenia-associated variation in CACNA1C. PLoS One  https://doi.org/10.1371/journal.pone.0157086 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Yoshimizu T, Pan JQ, Mungenast AE et al (2015) Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Mol Psychiatry 20:162–169.  https://doi.org/10.1038/mp.2014.143 CrossRefPubMedGoogle Scholar
  51. 51.
    Ji H, Tucker KR, Putzier I et al (2012) Functional characterization of ether-a-go-go-related gene potassium channels in midbrain dopamine neurons—implications for a role in depolarization block. Eur J Neurosci 36:2906–2916.  https://doi.org/10.1111/j.1460-9568.2012.08190.x CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pessia M, Servettini I, Panichi R et al (2008) ERG voltage-gated K + channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones. J Physiol 586:4877–4890.  https://doi.org/10.1113/jphysiol.2008.155762 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Huffaker SJ, Chen J, Nicodemus KK et al (2009) A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med 15:509–518.  https://doi.org/10.1038/nm.1962 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hashimoto R, Ohi K, Yasuda Y et al (2013) The KCNH2 gene is associated with neurocognition and the risk of schizophrenia. World J Biol Psychiatry 14:114–120.  https://doi.org/10.3109/15622975.2011.604350 CrossRefPubMedGoogle Scholar
  55. 55.
    Carr GV, Chen J, Yang F et al (2016) KCNH2-3.1 expression impairs cognition and alters neuronal function in a model of molecular pathology associated with schizophrenia. Mol Psychiatry  https://doi.org/10.1038/mp.2015.219 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    The 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65.  https://doi.org/10.1038/nature11632 CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Bachiller A, Poza J, Gómez C et al (2015) A comparative study of event-related coupling patterns during an auditory oddball task in schizophrenia. J Neural Eng 12:16007.  https://doi.org/10.1088/1741-2560/12/1/016007 CrossRefGoogle Scholar
  58. 58.
    Núñez P, Poza J, Bachiller A et al (2017) Exploring non-stationarity patterns in schizophrenia: neural reorganization abnormalities in the alpha band. J Neural Eng  https://doi.org/10.1088/1741-2552/aa6e05 CrossRefPubMedGoogle Scholar
  59. 59.
    Gomez-Pilar J, Poza J, Bachiller A et al (2015) Neural network reorganization analysis during an auditory oddball task in schizophrenia using wavelet entropy. Entropy 17:5241–5256.  https://doi.org/10.3390/e17085241 CrossRefGoogle Scholar
  60. 60.
    Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16:4240–4249.  https://doi.org/10.1016/j.neuropsychologia.2011.02.038 CrossRefPubMedGoogle Scholar
  61. 61.
    Nunez PL, Srinivasan R, Westdorp AF et al (1997) EEG coherency. I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515CrossRefGoogle Scholar
  62. 62.
    Yener GG, Başar E (2013) Brain oscillations as biomarkers in neuropsychiatric disorders: following an interactive panel discussion and synopsis. Suppl Clin Neurophysiol 62:343–363.  https://doi.org/10.1016/B978-0-7020-5307-8.00016-8 CrossRefPubMedGoogle Scholar
  63. 63.
    Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069.  https://doi.org/10.1016/j.neuroimage.2009.10.003 CrossRefPubMedGoogle Scholar
  64. 64.
    Erdfelder E, Faul F, Buchner A et al (2009) Statistical power analyses using G*Power 3.1: test for correlation and regression analyses. Behav Res Methods 41:1149–1160.  https://doi.org/10.3758/BRM.41.4.1149 CrossRefPubMedGoogle Scholar
  65. 65.
    Cosgrove D, Mothersill O, Kendall K et al (2017) Cognitive characterization of schizophrenia risk variants involved in synaptic transmission: evidence of CACNA1C’s role in working memory. Neuropsychopharmacology 42:2612–2622.  https://doi.org/10.1038/npp.2017.123 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhang SY, Hu Q, Tang T et al (2017) Role of CACNA1C gene polymorphisms and protein expressions in the pathogenesis of schizophrenia: a case-control study in a Chinese population. Neurol Sci 38:1393–1403.  https://doi.org/10.1007/s10072-017-2963-0 CrossRefPubMedGoogle Scholar
  67. 67.
    Woon PS, Sum MY, Kuswanto CN et al (2014) CACNA1C genomewide supported psychosis genetic variation affects cortical brain white matter integrity in chinese patients with schizophrenia. J Clin Psychiatry 75:e1284–e1290.  https://doi.org/10.4088/JCP.13m08777 CrossRefPubMedGoogle Scholar
  68. 68.
    Dietsche B, Backes H, Laneri D et al (2014) The impact of a CACNA1C gene polymorphism on learning and hippocampal formation in healthy individuals: a diffusion tensor imaging study. Neuroimage 89:256–261.  https://doi.org/10.1016/j.neuroimage.2013.11.030 CrossRefPubMedGoogle Scholar
  69. 69.
    Kabir ZD, Martínez-Rivera A, Rajadhyaksha AM (2017) From gene to behavior: L-type calcium channel mechanisms underlying neuropsychiatric symptoms. Neurotherapeutics 14:588–613CrossRefGoogle Scholar
  70. 70.
    Frazier TW, Youngstrom EA, Frankel BA et al (2014) Candidate gene associations with mood disorder, cognitive vulnerability, and fronto-limbic volumes. Brain Behav 4:418–430.  https://doi.org/10.1002/brb3.226 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Backes H, Dietsche B, Nagels A et al (2014) Genetic variation in CACNA1C affects neural processing in major depression. J Psychiatr Res 53:38–46.  https://doi.org/10.1016/j.jpsychires.2014.02.003 CrossRefPubMedGoogle Scholar
  72. 72.
    Dedic N, Pöhlmann ML, Richter JS et al (2018) Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol Psychiatry 23:533–543.  https://doi.org/10.1038/mp.2017.133 CrossRefPubMedGoogle Scholar
  73. 73.
    Krautheim JT, Straube B, Dannlowski U et al (2018) Outgroup emotion processing in the vACC is modulated by childhood trauma and CACNA1C risk variant. Soc Cogn Affect Neurosci 13:341–348.  https://doi.org/10.1093/scan/nsy004 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kircher T, Wöhr M, Nenadic I et al (2018) Neurobiology of the major psychoses: a translational perspective on brain structure and function—the FOR2107 consortium. Eur Arch Psychiatry Clin Neurosci.  https://doi.org/10.1007/s00406-018-0943-x CrossRefPubMedGoogle Scholar
  75. 75.
    Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res  https://doi.org/10.1093/nar/gkr917 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Molina V, Blanco JA (2013) A proposal for reframing schizophrenia research. J Nerv Ment Dis 201:744–752.  https://doi.org/10.1097/NMD.0b013e3182a21444 CrossRefPubMedGoogle Scholar
  77. 77.
    Lubeiro A, Rueda C, Hernández JA et al (2016) Identification of two clusters within schizophrenia with different structural, functional and clinical characteristics. Prog Neuro Psychopharmacol Biol Psychiatry  https://doi.org/10.1016/j.pnpbp.2015.06.015 CrossRefGoogle Scholar
  78. 78.
    Arnedo J, Svrakic DM, Del Val C et al (2015) Uncovering the hidden risk architecture of the schizophrenias: confirmation in three independent genome-wide association studies. Am J Psychiatry 172:139–153.  https://doi.org/10.1176/appi.ajp.2014.14040435 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Psychiatry Department, School of MedicineUniversity of ValladolidValladolidSpain
  2. 2.FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
  3. 3.Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de BarcelonaInstitut de Biomedicina de la Universitat de Barcelona (IBUB)BarcelonaSpain
  4. 4.CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III)MadridSpain
  5. 5.Biomedical Engineering Group, Department TSCIT, ETS Ingenieros de TelecomunicaciónUniversity of ValladolidValladolidSpain
  6. 6.Neurophysiology serviceUniversity Hospital of ValladolidValladolidSpain
  7. 7.Neurosciences Institute of Castilla y León (INCYL)University of SalamancaSalamancaSpain
  8. 8.IMUVA, Mathematics Research InstituteUniversity of ValladolidValladolidSpain
  9. 9.Achucarro Basque Center for Neurosciences, CIBERNED and Departamento de NeurocienciasUniversidad del País VascoLeioaSpain
  10. 10.Psychiatry serviceUniversity Hospital of ValladolidValladolidSpain
  11. 11.Psychiatry DepartmentUniversity Hospital of ÁlavaÁlavaSpain

Personalised recommendations