Evaluation of the methoxy-X04 derivative BSC4090 for diagnosis of prodromal and early Alzheimer’s disease from bioptic olfactory mucosa

  • Hannah Pellkofer
  • Friedrich Ihler
  • Bernhard G. Weiss
  • Janina Trothe
  • Harindranath Kadavath
  • Monika Chongtham
  • Marcel Kunadt
  • Dietmar Riedel
  • Finn Lornsen
  • Petra Wilken
  • Claudia Bartels
  • Sina Hirschel
  • Sebastian G. Russo
  • Elke Stransky
  • Lutz Trojan
  • Boris Schmidt
  • Eckhardt Mandelkow
  • Markus Zweckstetter
  • Martin Canis
  • Anja SchneiderEmail author
Original Paper


Alzheimer’s disease (AD) pathology precedes the onset of clinical symptoms by several decades. Thus, biomarkers are required to identify prodromal disease stages to allow for the early and effective treatment. The methoxy-X04-derivative BSC4090 is a fluorescent ligand which was designed to target neurofibrillary tangles in AD. BSC4090 staining was previously detected in post-mortem brains and olfactory mucosa derived from AD patients. We tested BSC4090 as a potential diagnostic marker of prodromal and early AD using olfactory mucosa biopsies from 12 individuals with AD, 13 with mild cognitive impairment (MCI), and 10 cognitively normal (CN) controls. Receiver-operating curve analysis revealed areas under the curve of 0.78 for AD versus CN and of 0.86 for MCI due to AD versus MCI of other causes. BSC4090 labeling correlated significantly with cerebrospinal fluid levels of tau protein phosphorylated at T181. Using NMR spectroscopy, we find that BSC4090 binds to fibrillar and pre-fibrillar but not to monomeric tau. Thus, BSC4090 may be an interesting candidate to detect AD at the early disease stages.


Alzheimer’s disease Biomarker Tau Olfactory epithelia Methoxy-X04 



Alzheimer’s disease


Area under the curve


Consortium to Establish a Registry for Alzheimer’s Disease


Cognitively normal


Cerebrospinal fluid


Fetal calf serum


Fast protein liquid chromatography


Heteronuclear single quantum coherence


Mini-mental state examination


National Institute on Aging–Alzheimer’s Association


Neurofibrillary Tangles


National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association


Nuclear magnetic resonance


Olfactory epithelia


Positron emission tomography


Receiver-operating curve


Standard uptake value ratio


Saturation-transfer difference



We are grateful to Angela Dettmar, DZNE Göttingen, for expert technical assistance and to Sabrina Hübschmann, DZNE Bonn, for preparation of recombinant tau proteins. A.S. and M.Z. were supported by grants from the German Research foundation Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain” (CNMPB) and the Center for Molecular Physiology of the Brain (CMPB). A.S. received funding by the German Research Foundation (Deutsche Forschungsgemeinschaft) grants SCHN1265 2-1 and 1-1. B.S. thanks Hans-und-Ilse-Breuerstiftung for support.

Author contributions

HP, MaC, MZ, EM, and AS: conception and design of the study. FI, BW, JT, HK, MC, MK, DR, FL, PW, CB, SH, SR, ES, LT, BS, MZ, MoC, and AS: acquisition and analysis of data. MZ, EM, and AS: drafting the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

Dr. Schneider received research support from Actelion which was unrelated to the present study. She is a principal investigator in industry-sponsored clinical trials for Merck MSD, Eli Lilly, Biogen and Ionis. Dr. Pellkofer Dr. Ihler, Dr. Weiss, J. Trothe, Dr. Kadavath, M. Chongtham, Dr. Kunadt, Dr. Riedel, F. Lornsen, Dr. Wilken, Dr. Bartels, S. Hirschel, S. Russo, E. Stransky, Dr.Trojan, Dr. Schmidt, Dr. Mandelkow, Dr. Zweckstetter, and Dr. Canis reported no potential conflicts of interest relevant to this manuscript.

Supplementary material

406_2018_955_MOESM1_ESM.tif (4.3 mb)
Supplementary material 1 (TIF 4365 KB)
406_2018_955_MOESM2_ESM.tif (11.4 mb)
Supplementary material 2 (TIF 11673 KB)
406_2018_955_MOESM3_ESM.tif (9.3 mb)
Supplementary material 3 (TIF 9511 KB)
406_2018_955_MOESM4_ESM.docx (22 kb)
Supplementary material 4 (DOCX 21 KB)
406_2018_955_MOESM5_ESM.docx (14 kb)
Supplementary material 5 (DOCX 13 KB)


  1. 1.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement 7:270–279CrossRefGoogle Scholar
  2. 2.
    Arnold SE, Lee EB, Moberg PJ, Stutzbach L, Kazi H, Han LY, Lee VM, Trojanowski JQ (2010) Olfactory epithelium amyloid-beta and paired helical filament-tau pathology in Alzheimer disease. Ann Neurol 67:462–469PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Arnold SE, Smutzer GS, Trojanowski JQ, Moberg PJ (1998) Cellular and molecular neuropathology of the olfactory epithelium and central olfactory pathways in Alzheimer’s disease and schizophrenia. Ann N Y Acad Sci 855:762–775PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Attems J, Jellinger KA (2006) Olfactory tau pathology in alzheimer disease and mild cognitive impairment. Clin Neuropathol 25:265–271PubMedPubMedCentralGoogle Scholar
  5. 5.
    Barghorn S, Biernat J, Mandelkow E (2005) Purification of recombinant tau protein and preparation of alzheimer-paired helical filaments in vitro. Methods Mol Biol 299:35–51PubMedPubMedCentralGoogle Scholar
  6. 6.
    Barresi M, Ciurleo R, Giacoppo S, Foti Cuzzola V, Celi D, Bramanti P, Marino S (2012) Evaluation of olfactory dysfunction in neurodegenerative diseases. J Neurol Sci 323:16–24PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC, Dominantly Inherited Alzheimer N (2012) Clinical and biomarker changes in dominantly inherited alzheimer’s disease. N Engl J Med 367:795–804PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bax A, Ikura M, Kay LE, Torchia DA, Tschudin R (1990) Comparison of different modes of 2-dimensional reverse-correlation nmr for the study of proteins. J Magn Reson 86:304–318Google Scholar
  9. 9.
    Bax AIM, Kay LE, Torchia DA, Tschudin R (1990) Comparison of different modes of 2-dimensional reverse-correlation nmr for the study of proteins. J Magn Reson 86:304–318Google Scholar
  10. 10.
    Becker S, Pflugbeil C, Groger M, Canis M, Ledderose GJ, Kramer MF (2012) Olfactory dysfunction in seasonal and perennial allergic rhinitis. Acta Otolaryngol 132:763–768PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bodenhausen G, Ruben DJ (1980) Natural abundance n-15 nmr by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189CrossRefGoogle Scholar
  12. 12.
    Bolander A, Kieser D, Scholz C, Heyny-von Haussen R, Mall G, Goetschy V, Czech C, Schmidt B (2014) Synthesis of methoxy-x04 derivatives and their evaluation in alzheimer’s disease pathology. Neurodegener Dis 13:209–213PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bolander A, Kieser D, Voss C, Bauer S, Schon C, Burgold S, Bittner T, Holzer J, Heyny-von Haussen R, Mall G, Goetschy V, Czech C, Knust H, Berger R, Herms J, Hilger I, Schmidt B (2012) Bis(arylvinyl)pyrazines, -pyrimidines, and -pyridazines as imaging agents for tau fibrils and beta-amyloid plaques in Alzheimer’s disease models. J Med Chem 55:9170–9180PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Braak H, Del Trecidi K (2015) Neuroanatomy and pathology of sporadic Alzheimer’s disease. Adv Anat Embryol Cell Biol 215:1–162PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Devanand DP, Lee S, Manly J, Andrews H, Schupf N, Doty RL, Stern Y, Zahodne LB, Louis ED, Mayeux R (2015) Olfactory deficits predict cognitive decline and alzheimer dementia in an urban community. Neurology 84:182–189PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Doty RL (2017) Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol 16:478–488PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Dumurgier J, Laplanche JL, Mouton-Liger F, Lapalus P, Indart S, Prevot M, Peoc’h K, Hugon J, Paquet C (2014) The screening of Alzheimer’s patients with CSF biomarkers, modulates the distribution of apoe genotype: Impact on clinical trials. J Neurol 261:1187–1195PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ehrensperger MM, Berres M, Taylor KI, Monsch AU (2010) Early detection of Alzheimer’s disease with a total score of the german cerad. J Int Neuropsychol Soc (JINS) 16:910–920CrossRefGoogle Scholar
  19. 19.
    Fagan AM, Mintun MA, Shah AR, Aldea P, Roe CM, Mach RH, Marcus D, Morris JC, Holtzman DM (2009) Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer’s disease. EMBO Mol Med 1:371–380PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gustke N, Trinczek B, Biernat J, Mandelkow EM, Mandelkow E (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33:9511–9522PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hernandez F, Avila J (2008) Tau aggregates and tau pathology. J Alzheimer’s Dis (JAD) 14:449–452CrossRefGoogle Scholar
  22. 22.
    Hock C, Golombowski S, Muller-Spahn F, Peschel O, Riederer A, Probst A, Mandelkow E, Unger J (1998) Histological markers in nasal mucosa of patients with Alzheimer’s disease. Eur Neurol 40:31–36PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Pankratz VS, Donohue MC, Trojanowski JQ (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FR, Visser PJ, Amyloid Biomarker Study G, Aalten P, Aarsland D, Alcolea D, Alexander M, Almdahl IS, Arnold SE, Baldeiras I, Barthel H, van Berckel BN, Bibeau K, Blennow K, Brooks DJ, van Buchem MA, Camus V, Cavedo E, Chen K, Chetelat G, Cohen AD, Drzezga A, Engelborghs S, Fagan AM, Fladby T, Fleisher AS, van der Flier WM, Ford L, Forster S, Fortea J, Foskett N, Frederiksen KS, Freund-Levi Y, Frisoni GB, Froelich L, Gabryelewicz T, Gill KD, Gkatzima O, Gomez-Tortosa E, Gordon MF, Grimmer T, Hampel H, Hausner L, Hellwig S, Herukka SK, Hildebrandt H, Ishihara L, Ivanoiu A, Jagust WJ, Johannsen P, Kandimalla R, Kapaki E, Klimkowicz-Mrowiec A, Klunk WE, Kohler S, Koglin N, Kornhuber J, Kramberger MG, Van Laere K, Landau SM, Lee DY, de Leon M, Lisetti V, Lleo A, Madsen K, Maier W, Marcusson J, Mattsson N, de Mendonca A, Meulenbroek O, Meyer PT, Mintun MA, Mok V, Molinuevo JL, Mollergard HM, Morris JC, Mroczko B, Van der Mussele S, Na DL, Newberg A, Nordberg A, Nordlund A, Novak GP, Paraskevas GP, Parnetti L, Perera G, Peters O, Popp J, Prabhakar S, Rabinovici GD, Ramakers IH, Rami L, Resende de Oliveira C, Rinne JO, Rodrigue KM et al (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313:1924–1938PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kadavath H, Hofele RV, Biernat J, Kumar S, Tepper K, Urlaub H, Mandelkow E, Zweckstetter M (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci USA 112:7501–7506PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lavoie J, Sawa A, Ishizuka K (2017) Application of olfactory tissue and its neural progenitors to schizophrenia and psychiatric research. Curr Opin Psychiatry 30:176–183PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lee JH, Goedert M, Hill WD, Lee VM, Trojanowski JQ (1993) Tau proteins are abnormally expressed in olfactory epithelium of alzheimer patients and developmentally regulated in human fetal spinal cord. Exp Neurol 121:93–105PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference nmr spectroscopy. Angew Chem Int Ed 38:1784–1788CrossRefGoogle Scholar
  29. 29.
    Montine TJ (2011) Prevalence estimates for latent neurodegenerative disease. Toxicol Pathol 39:99–102PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Moon J, Lee ST, Kong IG, Byun JI, Sunwoo JS, Shin JW, Shim JY, Park JH, Jeon D, Jung KH, Jung KY, Kim DY, Lee SK, Kim M, Chu K (2016) Early diagnosis of Alzheimer’s disease from elevated olfactory mucosal mir-206 level. Sci Rep 6:20364PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Mor E, Kano S, Colantuoni C, Sawa A, Navon R, Shomron N (2013) Microrna-382 expression is elevated in the olfactory neuroepithelium of schizophrenia patients. Neurobiol Dis 55:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Morris JC, Mohs RC, Rogers H, Fillenbaum G, Heyman A (1988) Consortium to establish a registry for Alzheimer’s disease (cerad) clinical and neuropsychological assessment of Alzheimer’s disease. Psychopharmacol Bull 24:641–652PubMedPubMedCentralGoogle Scholar
  33. 33.
    Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7:e34PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Mukrasch MD, Biernat J, von Bergen M, Griesinger C, Mandelkow E, Zweckstetter M (2005) Sites of tau important for aggregation populate {beta}-structure and bind to microtubules and polyanions. J Biol Chem 280:24978–24986PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BN, Scheltens P, Visser PJ, Amyloid PETSG, Verfaillie SC, Zwan MD, Adriaanse SM, Lammertsma AA, Barkhof F, Jagust WJ, Miller BL, Rosen HJ, Landau SM, Villemagne VL, Rowe CC, Lee DY, Na DL, Seo SW, Sarazin M, Roe CM, Sabri O, Barthel H, Koglin N, Hodges J, Leyton CE, Vandenberghe R, van Laere K, Drzezga A, Forster S, Grimmer T, Sanchez-Juan P, Carril JM, Mok V, Camus V, Klunk WE, Cohen AD, Meyer PT, Hellwig S, Newberg A, Frederiksen KS, Fleisher AS, Mintun MA, Wolk DA, Nordberg A, Rinne JO, Chetelat G, Lleo A, Blesa R, Fortea J, Madsen K, Rodrigue KM, Brooks DJ (2015) Prevalence of amyloid pet positivity in dementia syndromes: a meta-analysis. JAMA 313:1939–1949PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Tabaton M, Cammarata S, Mancardi GL, Cordone G, Perry G, Loeb C (1991) Abnormal tau-reactive filaments in olfactory mucosa in biopsy specimens of patients with probable Alzheimer’s disease. Neurology 41:391–394PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Talamo BR, Rudel R, Kosik KS, Lee VM, Neff S, Adelman L, Kauer JS (1989) Pathological changes in olfactory neurons in patients with Alzheimer’s disease. Nature 337:736–739PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Thal DR (2015) Clearance of amyloid beta-protein and its role in the spreading of Alzheimer’s disease pathology. Front Aging Neurosci 7:25PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Van de Bittner GC, Riley MM, Cao L, Ehses J, Herrick SP, Ricq EL, Wey HY, O’Neill MJ, Ahmed Z, Murray TK, Smith JE, Wang C, Schroeder FA, Albers MW, Hooker JM (2017) Nasal neuron pet imaging quantifies neuron generation and degeneration. J Clin Investig 127:681–694PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wilson RS, Arnold SE, Schneider JA, Boyle PA, Buchman AS, Bennett DA (2009) Olfactory impairment in presymptomatic Alzheimer’s disease. Ann N Y Acad Sci 1170:730–735PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment-beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med 256:240–246PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Witt M, Bormann K, Gudziol V, Pehlke K, Barth K, Minovi A, Hahner A, Reichmann H, Hummel T (2009) Biopsies of olfactory epithelium in patients with Parkinson’s disease. Mov Disord 24:906–914PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Yamagishi M, Ishizuka Y, Seki K (1994) Pathology of olfactory mucosa in patients with alzheimer’s disease. Ann Otol Rhinol Laryngol 103:421–427PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hannah Pellkofer
    • 1
  • Friedrich Ihler
    • 2
  • Bernhard G. Weiss
    • 2
  • Janina Trothe
    • 3
    • 4
  • Harindranath Kadavath
    • 3
  • Monika Chongtham
    • 3
  • Marcel Kunadt
    • 5
  • Dietmar Riedel
    • 6
  • Finn Lornsen
    • 5
  • Petra Wilken
    • 5
  • Claudia Bartels
    • 5
  • Sina Hirschel
    • 5
  • Sebastian G. Russo
    • 6
  • Elke Stransky
    • 7
  • Lutz Trojan
    • 8
  • Boris Schmidt
    • 9
  • Eckhardt Mandelkow
    • 10
    • 11
    • 12
  • Markus Zweckstetter
    • 1
    • 3
    • 4
  • Martin Canis
    • 2
  • Anja Schneider
    • 10
    • 13
    Email author
  1. 1.Department of NeurologyUniversity Medical CenterGöttingenGermany
  2. 2.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Medical CenterGöttingenGermany
  3. 3.German Center for Neurodegenerative DiseasesDZNE GöttingenGöttingenGermany
  4. 4.Max-Planck-Institute for Biophysical ChemistryGöttingenGermany
  5. 5.Department of Psychiatry and PsychotherapyUniversity Medical CenterGöttingenGermany
  6. 6.Department of AnaesthesiologyUniversity Medical CenterGöttingenGermany
  7. 7.Department of NeurologyUniversity TübingenTübingenGermany
  8. 8.Department of UrologyUniversity Medical CenterGöttingenGermany
  9. 9.Clemens Schoepf-Institute of Organic Chemistry and BiochemistryTechnische Universität DarmstadtDarmstadtGermany
  10. 10.German Center for Neurodegenerative DiseasesDZNE BonnBonnGermany
  11. 11.Center of Advanced European Studies and ResearchBonnGermany
  12. 12.Max Planck Institute for Metabolism ResearchHamburgGermany
  13. 13.Department of Neurodegenerative Diseases and Geriatric PsychiatryUniversity BonnBonnGermany

Personalised recommendations