Skip to main content

Advertisement

Log in

Effect of transcranial direct current stimulation on decision making and cognitive flexibility in gambling disorder

European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Decision making and cognitive flexibility are two components of cognitive control that play a critical role in the emergence, persistence, and relapse of gambling disorder. Transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) has been reported to enhance decision making and cognitive flexibility in healthy volunteers and individuals with addictive disorders. In this triple-blind randomized sham-controlled parallel study, we aimed to determine whether tDCS over DLPFC would modulate decision making and cognitive flexibility in individuals with gambling disorder. Twenty participants with gambling disorder were administered Iowa Gambling Task (IGT) and Wisconsin Card Sorting Test (WCST). Subsequently, participants were administered three every other day sessions of active right anodal /left cathodal tDCS (20 min, 2 mA) or sham stimulation over bilateral DLPFC. WCST and IGT were readministered following the last session. Baseline clinical severity, depression, impulsivity levels, and cognitive performance were similar between groups. TDCS over the DLPFC resulted in more advantageous decision making (F1,16 = 8.128, p = 0.01, ɳp2 =0.33) and better cognitive flexibility (F1,16 =8.782, p = 0.009, ɳp2 = 0.35), representing large effect sizes. The results suggest for the first time that tDCS enhanced decision making and cognitive flexibility in gambling disorder. Therefore, tDCS may be a promising neuromodulation-based therapeutic approach in gambling disorder.

Trial registration: Clinicaltrials.gov NCT03477799.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Abbreviations

BART:

Balloon analog risk task

BDI:

Beck depression inventory

BIS-11:

Barratt Impulsivity Scale-11

DLPFC:

Dorsolateral prefrontal cortex

DSM-5:

Diagnostic and statistical manual of mental disorders-5

fMRI:

Functional magnetic resonance imaging

GD:

Gambling disorder

IGT:

Iowa gambling task

PGSI:

Pathological Gambling Severity Index

SOGS:

South oaks gambling screen

tDCS:

Transcranial direct current stimulation

VMPFC:

Ventromedial prefrontal cortex

WCST:

Wisconsin card sorting test

References

  1. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)

  2. Morton JB, Ezekiel F, Wilk HA (2011) Cognitive control: easy to identify but hard to define. Top Cogn Sci 3:212–216. https://doi.org/10.1111/j.1756-8765.2011.01139.x

    Article  PubMed  Google Scholar 

  3. Achab S, Karila L, Khazaal Y (2014) Pathological gambling: update on decision making and neuro-functional studies in clinical samples. Curr Pharm Des 20:4000–4011

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez-Moya EM, Ochoa C, Jiménez-Murcia S et al (2011) Effect of executive functioning, decision-making and self-reported impulsivity on the treatment outcome of pathologic gambling. J Psychiatry Neurosci 36:165–175. https://doi.org/10.1503/jpn.090095

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brevers D, Bechara A, Cleeremans A, Noël X (2013) Iowa Gambling Task (IGT): twenty years after – gambling disorder and IGT. Front Psychol 4:665. https://doi.org/10.3389/fpsyg.2013.00665

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wiehler A, Peters J (2015) Reward-based decision making in pathological gambling: the roles of risk and delay. Neurosci Res 90:3–14. https://doi.org/10.1016/j.neures.2014.09.008

    Article  PubMed  Google Scholar 

  7. Leppink EW, Redden SA, Chamberlain SR, Grant JE (2016) Cognitive flexibility correlates with gambling severity in young adults. J Psychiatr Res 81:9–15. https://doi.org/10.1016/j.jpsychires.2016.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  8. Coutlee CG, Huettel SA (2012) The functional neuroanatomy of decision making: Prefrontal control of thought and action. Brain Res 1428:3–12. https://doi.org/10.1016/j.brainres.2011.05.053

    Article  CAS  PubMed  Google Scholar 

  9. Lee D (2013) Decision making: from neuroscience to psychiatry. Neuron 78:233–248. https://doi.org/10.1016/j.neuron.2013.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malloy-Diniz LF, Miranda DM, Grassi-Oliveira R (2017) Editorial: executive functions in psychiatric disorders. Front Psychol 8:1461. https://doi.org/10.3389/fpsyg.2017.01461

    Article  PubMed  PubMed Central  Google Scholar 

  11. Martin CS, Langenbucher JW, Chung T, Sher KJ (2014) Truth or consequences in the diagnosis of substance use disorders. Addiction 109:1773–1778. https://doi.org/10.1111/add.12615

    Article  PubMed  PubMed Central  Google Scholar 

  12. Engel A, Caceda R (2015) Can decision making research provide a better understanding of chemical and behavioral addictions? Curr Drug Abuse Rev 8:75–85. https://doi.org/10.2174/1874473708666150916113131

    Article  CAS  PubMed  Google Scholar 

  13. Amlung M, Vedelago L, Acker J et al (2017) Steep delay discounting and addictive behavior: a meta-analysis of continuous associations. Addiction 112:51–62. https://doi.org/10.1111/add.13535

    Article  Google Scholar 

  14. Fecteau S, Fregni F, Boggio PS et al (2010) Neuromodulation of decision-making in the addictive brain. Subst Use Misuse 45:1766–1786. https://doi.org/10.3109/10826084.2010.482434

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bickel WK, Jarmolowicz DP, Mueller ET et al (2012) Are executive function and impulsivity antipodes? A conceptual reconstruction with special reference to addiction. Psychopharmacology 221:361–387. https://doi.org/10.1007/s00213-012-2689-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Probst C, Manthey J, Martinez A, Rehm J (2015) Alcohol use disorder severity and reported reasons not to seek treatment: a cross-sectional study in European primary care practices. Subst Abuse Treat Prev Policy 10:32. https://doi.org/10.1186/s13011-015-0028-z

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maremmani AGI, Rovai L, Rugani F et al (2012) Correlations between awareness of illness (insight) and history of addiction in heroin-addicted patients. Front Psychiatry 3:61. https://doi.org/10.3389/fpsyt.2012.00061

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fauth-Bühler M, Mann K, Potenza MN (2017) Pathological gambling: a review of the neurobiological evidence relevant for its classification as an addictive disorder. Addict Biol 22:885–897. https://doi.org/10.1111/adb.12378

    Article  PubMed  Google Scholar 

  19. Potenza MN (2014) The neural bases of cognitive processes in gambling disorder. Trends Cogn Sci 18:429–438. https://doi.org/10.1016/j.tics.2014.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kapsomenakis A, Simos PG, Konstantakopoulos G, Kasselimis DS (2018) In search of executive impairment in pathological gambling: a neuropsychological study on non-treatment seeking gamblers. J Gambl Stud. https://doi.org/10.1007/s10899-018-9758-y

    Article  PubMed  Google Scholar 

  21. Ledgerwood DM, Orr ES, Kaploun KA et al (2012) Executive function in pathological gamblers and healthy controls. J Gambl Stud 28:89–103. https://doi.org/10.1007/s10899-010-9237-6

    Article  PubMed  Google Scholar 

  22. Kovács I, Richman MJ, Janka Z et al (2017) Decision making measured by the Iowa Gambling Task in alcohol use disorder and gambling disorder: a systematic review and meta-analysis. Drug Alcohol Depend 181:152–161. https://doi.org/10.1016/j.drugalcdep.2017.09.023

    Article  PubMed  Google Scholar 

  23. Clark L, Averbeck B, Payer D et al (2013) Pathological choice: the neuroscience of gambling and gambling addiction. J Neurosci 33:17617–17623. https://doi.org/10.1523/JNEUROSCI.3231-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brevers D, Cleeremans A, Goudriaan AE et al (2012) Decision making under ambiguity but not under risk is related to problem gambling severity. Psychiatry Res 200:568–574. https://doi.org/10.1016/j.psychres.2012.03.053

    Article  PubMed  Google Scholar 

  25. Li X, Lu Z-L, D’Argembeau A et al (2010) The iowa gambling task in fMRI images. Hum Brain Mapp 31:410–423. https://doi.org/10.1002/hbm.20875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fleck MS, Daselaar SM, Dobbins IG, Cabeza R (2006) Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cereb Cortex 16:1623–1630. https://doi.org/10.1093/cercor/bhj097

    Article  PubMed  Google Scholar 

  27. Brevers D, Noël X, He Q et al (2016) Increased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severity. Addict Biol 21:688–699. https://doi.org/10.1111/adb.12239

    Article  PubMed  Google Scholar 

  28. Jurado MB, Rosselli M (2007) The elusive nature of executive functions: a review of our current understanding. Neuropsychol Rev 17:213–233. https://doi.org/10.1007/s11065-007-9040-z

    Article  PubMed  Google Scholar 

  29. Domínguez-Salas S, Díaz-Batanero C, Lozano-Rojas OM, Verdejo-García A (2016) Impact of general cognition and executive function deficits on addiction treatment outcomes: Systematic review and discussion of neurocognitive pathways. Neurosci Biobehav Rev 71:772–801. https://doi.org/10.1016/j.neubiorev.2016.09.030

    Article  PubMed  Google Scholar 

  30. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W (2006) Neurocognitive functions in pathological gambling: a comparison with alcohol dependence, Tourette syndrome and normal controls. Addiction 101:534–547. https://doi.org/10.1111/j.1360-0443.2006.01380.x

    Article  PubMed  Google Scholar 

  31. Ochoa C, Alvarez-Moya EM, Penelo E et al (2013) Decision-making deficits in pathological gambling: the role of executive functions, explicit knowledge and impulsivity in relation to decisions made under ambiguity and risk. Am J Addict 22:492–499. https://doi.org/10.1111/j.1521-0391.2013.12061.x

    Article  PubMed  Google Scholar 

  32. Brand M, Recknor EC, Grabenhorst F, Bechara A (2007) Decisions under ambiguity and decisions under risk: correlations with executive functions and comparisons of two different gambling tasks with implicit and explicit rules. J Clin Exp Neuropsychol 29:86–99. https://doi.org/10.1080/13803390500507196

    Article  PubMed  Google Scholar 

  33. Iudicello JE, Woods SP, Cattie JE et al (2013) Risky decision-making in HIV-associated neurocognitive disorders (HAND). Clin Neuropsychol 27:256–275. https://doi.org/10.1080/13854046.2012.740077

    Article  PubMed  Google Scholar 

  34. Dong X, Du X, Qi B (2016) Conceptual knowledge influences decision making differently in individuals with high or low cognitive flexibility: an ERP study. PLoS One 11:e0158875. https://doi.org/10.1371/journal.pone.0158875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buchsbaum BR, Greer S, Chang W-L, Berman KF (2005) Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes. Hum Brain Mapp 25:35–45. https://doi.org/10.1002/hbm.20128

    Article  PubMed  Google Scholar 

  36. Alvarez JA, Emory E (2006) Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 16:17–42. https://doi.org/10.1007/s11065-006-9002-x

    Article  PubMed  Google Scholar 

  37. Moccia L, Pettorruso M, De Crescenzo F et al (2017) Neural correlates of cognitive control in gambling disorder: a systematic review of fMRI studies. Neurosci Biobehav Rev 78:104–116. https://doi.org/10.1016/j.neubiorev.2017.04.025

    Article  PubMed  Google Scholar 

  38. Nitsche MA, Cohen LG, Wassermann EM et al (2008) Transcranial direct current stimulation: State of the art 2008. Brain Stimul 1:206–223. https://doi.org/10.1016/j.brs.2008.06.004

    Article  Google Scholar 

  39. Fecteau S, Knoch D, Fregni F et al (2007) Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci 27:12500–12505. https://doi.org/10.1523/JNEUROSCI.3283-07.2007

    Article  CAS  PubMed  Google Scholar 

  40. Fecteau S, Pascual-Leone A, Zald DH et al (2007) Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci 27:6212–6218. https://doi.org/10.1523/JNEUROSCI.0314-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheng GLF, Lee TMC (2016) Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex. Soc Neurosci 11:353–364. https://doi.org/10.1080/17470919.2015.1085895

    Article  PubMed  Google Scholar 

  42. Gilmore CS, Dickmann PJ, Nelson BG et al (2018) Transcranial Direct Current Stimulation (tDCS) paired with a decision-making task reduces risk-taking in a clinically impulsive sample. Brain Stimul 11:302–309. https://doi.org/10.1016/j.brs.2017.11.011

    Article  PubMed  Google Scholar 

  43. Gorini A, Lucchiari C, Russell-Edu W, Pravettoni G (2014) Modulation of risky choices in recently abstinent dependent cocaine users: a transcranial direct-current stimulation study. Front Hum Neurosci 8:661. https://doi.org/10.3389/fnhum.2014.00661

    Article  PubMed  PubMed Central  Google Scholar 

  44. Boggio PS, Campanhã C, Valasek CA et al (2010) Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur J Neurosci 31:593–597. https://doi.org/10.1111/j.1460-9568.2010.07080.x

    Article  PubMed  Google Scholar 

  45. Mansouri FA, Fehring DJ, Feizpour A et al (2016) Direct current stimulation of prefrontal cortex modulates error-induced behavioral adjustments. Eur J Neurosci 44:1856–1869. https://doi.org/10.1111/ejn.13281

    Article  PubMed  Google Scholar 

  46. Luft CDB, Zioga I, Banissy MJ, Bhattacharya J (2017) Relaxing learned constraints through cathodal tDCS on the left dorsolateral prefrontal cortex. Sci Rep 7:2916. https://doi.org/10.1038/s41598-017-03022-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zack M, Cho SS, Parlee J et al (2016) Effects of high frequency repeated transcranial magnetic stimulation and continuous theta burst stimulation on gambling reinforcement, delay discounting, and stroop interference in men with pathological gambling. Brain Stimul 9:867–875. https://doi.org/10.1016/j.brs.2016.06.003

    Article  PubMed  Google Scholar 

  48. Gay A, Boutet C, Sigaud T et al (2017) A single session of repetitive transcranial magnetic stimulation of the prefrontal cortex reduces cue-induced craving in patients with gambling disorder. Eur Psychiatry 41:68–74. https://doi.org/10.1016/j.eurpsy.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  49. Sauvaget A, Bulteau S, Guilleux A et al (2018) Both active and sham low-frequency rTMS single sessions over the right DLPFC decrease cue-induced cravings among pathological gamblers seeking treatment: a randomized, double-blind, sham-controlled crossover trial. J Behav Addict 7:126–136. https://doi.org/10.1556/2006.7.2018.14

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dickler M, Lenglos C, Renauld E et al (2018) Online effects of transcranial direct current stimulation on prefrontal metabolites in gambling disorder. Neuropharmacology 131:51–57. https://doi.org/10.1016/j.neuropharm.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  51. Lesieur HR, Blume SB (1987) The South Oaks Gambling Screen (SOGS): a new instrument for the identification of pathological gamblers. Am J Psychiatry 144:1184–1188. https://doi.org/10.1176/ajp.144.9.1184

    Article  CAS  PubMed  Google Scholar 

  52. Ferris J, Consultants HW, Ladouceur R et al (2001) THE CANADIAN PROBLEM GAMBLING INDEX: FINAL REPORT The Canadian Problem Gambling Index: Final Report Submitted for the Canadian Centre on Substance Abuse (CCSA)

  53. Beck AT, Ward CH, Mendelson M et al (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    Article  CAS  PubMed  Google Scholar 

  54. Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51:768–774

    Article  CAS  Google Scholar 

  55. Brunoni AR, Amadera J, Berbel B et al (2011) A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol 14:1133–1145. https://doi.org/10.1017/S1461145710001690

    Article  PubMed  Google Scholar 

  56. Woods AJ, Antal A, Bikson M et al (2016) A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 127:1031–1048

    Article  CAS  Google Scholar 

  57. Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 117:845–850. https://doi.org/10.1016/j.clinph.2005.12.003

    Article  Google Scholar 

  58. Icellioglu S (2015) Iowa Kumar Testi: Normatif veriler ve yürütücü işlevlerle ilişkisi. Dusunen Adam J Psychiatry Neurol Sci 222–230. https://doi.org/10.5350/DAJPN2015280305

  59. Heaton SK, Chelune GJ, Talley JL, Kay GG, Curtiss G (1993) Wisconsin Card Sorting Test Manual: Revised and expanded. Odessa, Florida

    Google Scholar 

  60. Boggio PS, Zaghi S, Villani AB et al (2010) Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug Alcohol Depend 112:220–225. https://doi.org/10.1016/j.drugalcdep.2010.06.019

    Article  PubMed  Google Scholar 

  61. He Q, Chen M, Chen C et al (2016) Anodal stimulation of the left DLPFC increases IGT scores and decreases delay discounting rate in healthy males. Front Psychol 7:1421. https://doi.org/10.3389/fpsyg.2016.01421

    Article  PubMed  PubMed Central  Google Scholar 

  62. Benussi A, Alberici A, Cantoni V et al (2017) Modulating risky decision-making in Parkinson’s disease by transcranial direct current stimulation. Eur J Neurol 24:751–754. https://doi.org/10.1111/ene.13286

    Article  CAS  PubMed  Google Scholar 

  63. Ouerchefani R, Ouerchefani N, Allain P et al (2017) Contribution of different regions of the prefrontal cortex and lesion laterality to deficit of decision-making on the Iowa Gambling Task. Brain Cogn 111:73–85. https://doi.org/10.1016/j.bandc.2016.06.010

    Article  PubMed  Google Scholar 

  64. Fellows LK, Farah MJ (2005) Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb Cortex 15:58–63. https://doi.org/10.1093/cercor/bhh108

    Article  PubMed  Google Scholar 

  65. Baumgartner T, Knoch D, Hotz P et al (2011) Dorsolateral and ventromedial prefrontal cortex orchestrate normative choice. Nat Neurosci 14:1468–1474. https://doi.org/10.1038/nn.2933

    Article  CAS  PubMed  Google Scholar 

  66. Hare TA, Camerer CF, Rangel A (2009) Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324:646–648. https://doi.org/10.1126/science.1168450

    Article  CAS  Google Scholar 

  67. Boog M, Höppener P, Wetering VD, et al (2014) Cognitive inflexibility in gamblers is primarily present in reward-related decision making. Front Hum Neurosci 8:569. https://doi.org/10.3389/fnhum.2014.00569

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cavedini P, Riboldi G, Keller R et al (2002) Frontal lobe dysfunction in pathological gambling patients. Biol Psychiatry 51:334–341

    Article  PubMed  Google Scholar 

  69. Gleichgerrcht E, Ibáñez A, Roca M et al (2010) Decision-making cognition in neurodegenerative diseases. Nat Rev Neurol 6:611–623. https://doi.org/10.1038/nrneurol.2010.148

    Article  CAS  PubMed  Google Scholar 

  70. Brand M, Labudda K, Markowitsch HJ (2006) Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Netw 19:1266–1276. https://doi.org/10.1016/j.neunet.2006.03.001

    Article  PubMed  Google Scholar 

  71. Toplak ME, Sorge GB, Benoit A et al (2010) Decision-making and cognitive abilities: a review of associations between Iowa Gambling Task performance, executive functions, and intelligence. Clin Psychol Rev 30:562–581. https://doi.org/10.1016/j.cpr.2010.04.002

    Article  PubMed  Google Scholar 

  72. Overman WH, Frassrand K, Ansel S et al (2004) Performance on the IOWA card task by adolescents and adults. Neuropsychologia 42:1838–1851. https://doi.org/10.1016/j.neuropsychologia.2004.03.014

    Article  PubMed  Google Scholar 

  73. Nakamura-Palacios EM, Lopes IBC, Souza RA et al (2016) Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction. J Neural Transm 123:1179–1194. https://doi.org/10.1007/s00702-016-1559-9

    Article  CAS  PubMed  Google Scholar 

  74. Ouellet J, McGirr A, Van den Eynde F et al (2015) Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): A randomized and sham-controlled exploratory study. J Psychiatr Res 69:27–34. https://doi.org/10.1016/j.jpsychires.2015.07.018

    Article  PubMed  Google Scholar 

  75. The Lancet (2017) Problem gambling is a public health concern. Lancet 390:913. https://doi.org/10.1016/S0140-6736(17)32333-4

    Article  CAS  PubMed  Google Scholar 

  76. Choi S-W, Shin Y-C, Kim D-J et al (2017) Treatment modalities for patients with gambling disorder. Ann Gen Psychiatry 16:23. https://doi.org/10.1186/s12991-017-0146-2

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ronzitti S, Soldini E, Smith N et al (2018) Are Treatment Outcomes Determined by Type of Gambling? A UK Study. J Gambl Stud, In Press. https://doi.org/10.1007/s10899-018-9752-4

  78. Pfund RA, Peter SC, Whelan JP, Meyers AW (2017) When Does Premature Treatment Termination Occur? Examining Session-by-Session Dropout Among Clients with Gambling Disorder. J Gambl Stud 34:617–630. https://doi.org/10.1007/s10899-017-9733-z

    Article  Google Scholar 

  79. Challet-Bouju G, Bruneau M, Group IGNACE C, et al (2017) Cognitive Remediation Interventions for Gambling Disorder: A Systematic Review. Front Psychol 8:1961. https://doi.org/10.3389/fpsyg.2017.01961

    Article  PubMed  PubMed Central  Google Scholar 

  80. Perkins FN, Freeman KB (2018) Pharmacotherapies for decreasing maladaptive choice in drug addiction: targeting the behavior and the drug. Pharmacol Biochem Behav 164:40–49. https://doi.org/10.1016/j.pbb.2017.06.015

    Article  CAS  PubMed  Google Scholar 

  81. Bickel WK, Quisenberry AJ, Moody L, Wilson AG (2015) Therapeutic opportunities for self-control repair in addiction and related disorders: change and the limits of change in trans-disease processes. Clin Psychol Sci 3:140–153. https://doi.org/10.1177/2167702614541260

    Article  PubMed  Google Scholar 

  82. Verdejo-Garcia A (2016) Cognitive training for substance use disorders: Neuroscientific mechanisms. Neurosci Biobehav Rev 68:270–281. https://doi.org/10.1016/j.neubiorev.2016.05.018

    Article  PubMed  Google Scholar 

  83. Leblond J, Ladouceur R, Blaszczynski A (2003) Which pathological gamblers will complete treatment? Br J Clin Psychol 42:205–209. https://doi.org/10.1348/014466503321903607

    Article  PubMed  Google Scholar 

  84. van den Bos R, Homberg J, de Visser L (2013) A critical review of sex differences in decision-making tasks: focus on the Iowa Gambling Task. Behav Brain Res 238:95–108. https://doi.org/10.1016/j.bbr.2012.10.002

    Article  Google Scholar 

  85. Reber J, Tranel D (2017) Sex differences in the functional lateralization of emotion and decision making in the human brain. J Neurosci Res 95:270–278. https://doi.org/10.1002/jnr.23829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the participants who have kindly taken part in this study. The authors gratefully acknowledge the assistance of Mustafa Çetinkaya for referring participants and Göktuğ Aşçı for the preparation of the equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Aksu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soyata, A.Z., Aksu, S., Woods, A.J. et al. Effect of transcranial direct current stimulation on decision making and cognitive flexibility in gambling disorder. Eur Arch Psychiatry Clin Neurosci 269, 275–284 (2019). https://doi.org/10.1007/s00406-018-0948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-018-0948-5

Keywords

Navigation