Advertisement

Cognitive-behavioral therapy effects on alerting network activity and effective connectivity in panic disorder

  • Susanne Neufang
  • Maximilian J. Geiger
  • György A. Homola
  • Marina Mahr
  • Miriam A. Schiele
  • Andrea Gehrmann
  • Brigitte Schmidt
  • Agnieszka Gajewska
  • Johannes Nowak
  • Eva Meisenzahl-Lechner
  • Mirko Pham
  • Marcel Romanos
  • Atae Akhrif
  • Katharina Domschke
Original Paper
  • 55 Downloads

Abstract

Given the particular relevance of arousal and alerting in panic disorder (PD), here the alerting network was investigated (1) contrasting patients with PD and healthy controls, (2) as a function of anxiety sensitivity constituting a dimensional measure of panic-related anxiety, and (3) as a possible correlate of treatment response. Using functional magnetic resonance imaging (fMRI), 45 out-patients with PD (f = 34) and 51 matched healthy controls were investigated for brain activation patterns and effective connectivity (Dynamic Causal Modeling, DCM) while performing the Attention Network Task (ANT). Anxiety sensitivity was ascertained by the Anxiety Sensitivity Index (ASI). Forty patients and 48 controls were re-scanned after a 6 weeks cognitive-behavioral treatment (CBT) or an equivalent waiting time, respectively. In the alerting condition, patients showed decreased activation in fronto-parietal pathways including the middle frontal gyrus and the superior parietal lobule (MFG, SPL). In addition, ASI scores were negatively correlated with connectivity emerging from the SPL, the SFB and the LC and going to the MFG in patients but not in healthy controls. CBT resulted in an increase in middle frontal and parietal activation along with increased connectivity going from the MFG to the SPL. This change in connectivity was positively correlated with reduction in ASI scores. There were no changes in controls. The present findings point to a pathological disintegration of the MFG in a fronto-parietal pathway in the alerting network in PD which was observed to be reversible by a successful CBT intervention.

Keywords

Anxiety Arousal Alerting system Neuroimaging Effective connectivity Frontal cortex Locus coeruleus Fronto-coerulear connectivity 

Notes

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG; SFB-TRR-58 project C02 to KD and SN) and the Interdisciplinary Center for Clinical Research (IZKF), University of Wuerzburg (N-262 to KD, SN and GH).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interests.

Informed consent

Written informed consent was obtained from all participants. The study was approved by the local ethics committee at Wuerzburg University, Germany, and carried out in accordance with the declaration of Helsinki.

Supplementary material

406_2018_945_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 KB)
406_2018_945_MOESM2_ESM.docx (449 kb)
Supplementary material 2 (DOCX 448 KB)
406_2018_945_MOESM3_ESM.docx (15 kb)
Supplementary material 3 (DOCX 14 KB)
406_2018_945_MOESM4_ESM.docx (26 kb)
Supplementary material 4 (DOCX 25 KB)

References

  1. 1.
    Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jönsson B, Olesen J, Allgulander C, Alonso J, Faravelli C, Fratiglioni L, Jennum P, Lieb R, Maercker A, van Os J, Preisig M, Salvador-Carulla L, Simon R, Steinhausen HC (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21:655–679.  https://doi.org/10.1016/j.euroneuro.2011.07.018 CrossRefPubMedGoogle Scholar
  2. 2.
    Doberenz S, Roth WT, Wollburg E, Breuninger C, Kim S (2010) Twenty-four hour skin conductance in panic disorder. J Psychiatr Res 44:1137–1147.  https://doi.org/10.1016/j.jpsychires.2010.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Eysenck MW, Derakshan N, Santos R, Calvo MG (2007) Anxiety and cognitive performance, attentional control theory. Emotion 7:336–353CrossRefGoogle Scholar
  4. 4.
    Meuret AE, Rosenfield D, Wilhelm FH, Zhou E, Conrad A, Ritz T, Roth WT (2011) Do unexpected panic attacks occur spontaneously? Biol Psychiatry 70:985–991.  https://doi.org/10.1016/j.biopsych.2011.05.027 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Parente AC, Garcia-Leal C, Del-Ben CM, Guimaraes FS, Graeff FG (2005) Subjective and neurovegetative changes in healthy volunteers and panic patients performing simulated public speaking. Eur Neuropsychopharmacol 15:663–671CrossRefGoogle Scholar
  6. 6.
    Reiss S, Peterson RA, Gursky DM, McNally RJ (1986) Anxiety sensitivity, anxiety frequency and the prediction of fearfulness. Behav Res Ther 24:1–8CrossRefGoogle Scholar
  7. 7.
    Schmidt NB, Lerew DR, Jackson RJ (1997) The role of anxiety sensitivity in the pathogenesis of panic: prospective evaluation of spontaneous panic attacks during acute stress. J Abnorm Psychol 106:355–364CrossRefGoogle Scholar
  8. 8.
    Schmidt NB, Lerew DR, Jackson RJ (1999) Prospective evaluation of anxiety sensitivity in the pathogenesis of panic: replication and extension. J Abnorm Psychol 108:532–537CrossRefGoogle Scholar
  9. 9.
    Schmidt NB, Zvolensky MJ, Maner JK (2006) Anxiety sensitivity: prospective prediction of panic attacks and Axis I pathology. J Psychiat Res 40:691–699CrossRefGoogle Scholar
  10. 10.
    Howells FM, Stein DJ, Russel VA (2012) Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metab Brain Dis 27:267–274.  https://doi.org/10.1007/s11011-012-9287-9 CrossRefPubMedGoogle Scholar
  11. 11.
    Geiger MJ, Neufang S, Stein DJ, Domschke K (2014) Arousal and the attentional network in panic disorder. Hum Psychopharmacol 29:599–603.  https://doi.org/10.1002/hup.2436 CrossRefPubMedGoogle Scholar
  12. 12.
    Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. NeuroImage 26:471–479CrossRefGoogle Scholar
  13. 13.
    Pacheco-Unguetti AP, Acosta A, Callejas A, Lupianez J (2010) Attention and anxiety, different attentional functioning under state and trait anxiety. Psychol Sci 21:298–304.  https://doi.org/10.1177/0956797609359624 CrossRefPubMedGoogle Scholar
  14. 14.
    Pacheco-Unguetti AP, Acosta A, Marques E, Lupianez J (2011) Alterations of the attentional networks in patients with anxiety disorders. J Anxiety disord 25:888–895.  https://doi.org/10.1016/j.janxdis.2011.04.010 CrossRefPubMedGoogle Scholar
  15. 15.
    Garner M, Attwood A, Baldwin DS, Munafo MR (2012) Inhalation of 7.5% carbon dioxide increases alerting and orienting attention network function. Psychopharmacology 223:67–73.  https://doi.org/10.1007/s00213-012-2690-4 CrossRefPubMedGoogle Scholar
  16. 16.
    Petersen SE, Posner MI (2012) The attention system of the human brain, 20 years after. Annu Rev Neurosci 35:73–89.  https://doi.org/10.1146/annurev-neuro-062111-150525. https//:CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function, adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450CrossRefGoogle Scholar
  18. 18.
    Foote SL, Berridge CW, Adams LM, Pineda JA (1991) Electrophysiological evidence for the involvement of the locus coeruleus in alerting, orienting, and attending. Prog Brain Res 88:521–532CrossRefGoogle Scholar
  19. 19.
    Sullivan GM, Coplan JD, Kent JM, Gorman JM (1999) The noradrenergic system in pathological anxiety, a focus on panic with relevance to generalized anxiety and phobias. Biol Psychiatry 46:1205–1218CrossRefGoogle Scholar
  20. 20.
    Shomstein S (2012) Cognitive functions of the posterior parietal cortex, top-down and bottom-up attentional control. Front Integr Neurosci 6:38.  https://doi.org/10.3389/fnint.2012.00038.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zvolensky MJ, Schmidt NB (2007) Introduction to anxiety sensitivity: recent findings and new directions. Behav Modif 31:139–144CrossRefGoogle Scholar
  22. 22.
    Domschke K, Reif A, Weber H, Richter J, Hohoff C, Ohrmann P, Pedersen A, Bauer J, Suslow T, Kugel H, Heindel W, Baumann C, Klauke B, Jacob C, Maier W, Fritze J, Bandelow B, Krakowitzky P, Rothermundt M, Erhardt A, Binder EB, Holsboer F, Gerlach AL, Kircher T, Lang T, Alpers GW, Ströhle A, Fehm L, Gloster AT, Wittchen HU, Arolt V, Pauli P, Hamm A, Deckert J (2011) Neuropeptide S receptor gene—converging evidence for a role in panic disorder. Mol Psychiatry 16:938–948.  https://doi.org/10.1038/mp.2010.81 CrossRefPubMedGoogle Scholar
  23. 23.
    Neufang S, Geiger MJ, Homola GA, Mahr M, Akhrif A, Nowak J, Reif A, Romanos M, Deckert J, Solymosi L, Domschke K (2015) Modulation of prefrontal functioning in attention systems by NPSR1 gene variation. Neuroimage 114:199–206.  https://doi.org/10.1016/j.neuroimage.2015.03.064 CrossRefPubMedGoogle Scholar
  24. 24.
    Mechelli A, Price CJ, Noppeney U, Friston KJ (2003) A dynamic causal modeling study on category effects, bottom–up or top–down mediation? J Cogn Neurosci 15:925–934CrossRefGoogle Scholar
  25. 25.
    Wittchen HU, Zaudig M, Fydrich T (1997) SKID Strukturiertes Klinisches Interview für DSM-IV Achse I und II Handanweisung. Hogrefe, GöttingenGoogle Scholar
  26. 26.
    Alpers GW, Pauli P (2002) Angstsensitivitäts-Index. PsychScience WürzburgGoogle Scholar
  27. 27.
    Spielberger CD, Gorssuch RL, Lushene PR, Vagg PR, Jacobs GA (1983) Manual for the state-trait anxiety inventory. Consulting Psychologists PressGoogle Scholar
  28. 28.
    Beck AT, Steer RA, Brown GK (1996) Manual for the beck depression inventory-II. Psychological Corporation, San AntonioGoogle Scholar
  29. 29.
    Hautzinger M, Keller F, Kühner (2009) Beck Depressions-Inventar-II, Frankfurt/M, Germany Pearson AssessmentGoogle Scholar
  30. 30.
    Fan J, McCandliss BD, Sommer T, Raz A, Posner MI (2002) Testing the efficiency and independence of attentional networks. J Cogn Neurosci 14:340–347CrossRefGoogle Scholar
  31. 31.
    Geiger MJ, Domschke K, Homola GA, Schulz SM, Nowak J, Akhrif A, Pauli P, Deckert J, Neufang S (2016) ADORA2A genotype modulates interoceptive and exteroceptive processing in a fronto-insular network. Eur Neuropsychopharmacol 26:1274–1285.  https://doi.org/10.1016/j.euroneuro.2016.05.007 CrossRefPubMedGoogle Scholar
  32. 32.
    Gloster AT, Wittchen HU, Einsle F, Lang T, Helbig-Lang S, Fydrich T, Fehm L, Hamm AO, Richter J, Alpers GW, Gerlach AL, Ströhle A, Kircher T, Deckert J, Zwanzger P, Höfler M, Arolt V (2011) Psychological treatment for panic disorder with agoraphobia, a randomized controlled trial to examine the role of therapist-guided exposure in situ in CBT. J Consult Clin Psychol 79:406–420.  https://doi.org/10.1037/a0023584 CrossRefPubMedGoogle Scholar
  33. 33.
    Ziegler C, Richter J, Mahr M, Gajewska A, Schiele MA, Gehrmann A, Schmidt B, Lesch KP, Lang T, Helbig-Lang S, Pauli P, Kircher T, Reif A, Rief W, Vossbeck-Elsebusch AN, Arolt V, Wittchen HU, Hamm AO, Deckert J, Domschke K (2016) MAOA gene hypomethylation in panic disorder-reversibility of an epigenetic risk pattern by psychotherapy. Transl Psychiatry 6:e773.  https://doi.org/10.1038/tp.2016.41.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  35. 35.
    Xuan B, Mackie MA, Spagna A, Wu T, Tian Y, Hof PR, Fan J (2016) The activation of interactive attentional networks. Neuroimage 129:308–319.  https://doi.org/10.1016/j.neuroimage.2016.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Firbank M, Kobeleva X, Cherry G, Killen A, Gallagher P, Burn DJ, Thomas AJ, O’Brien JT, Taylor JP (2016) Neural correlates of attention-executive dysfunction in lewy body dementia and Alzheimer’s disease. Hum Brain Mapp 37:1254–1270.  https://doi.org/10.1002/hbm.23100 CrossRefPubMedGoogle Scholar
  37. 37.
    Protopopescu X, Pan H, Tuescher O, Cloitre M, Goldstein M, Engelien A, Yang Y, Gorman J, LeDoux J, Stern E, Silbersweig D (2006) Increased brainstem volume in panic disorder, a voxel-based morphometric study. Neuroreport 17:361–363CrossRefGoogle Scholar
  38. 38.
    Sobanski T, Wagner G (2017) Functional neuroanatomy in panic disorder: status quo of the research. World J Psychiatry 7:12–33.  https://doi.org/10.5498/wjp.v7.i1.12 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Asami T, Yamasue H, Hayano F, Nakamura M, Uehara K, Otsuka T, Roppongi T, Nihashi N, Inoue T, Hirayasu Y (2009) Sexually dimorphic gray matter volume reduction in patients with panic disorder. Psychiatry Res 173:128–134.  https://doi.org/10.1016/j.pscychresns.2008.10.004 CrossRefPubMedGoogle Scholar
  40. 40.
    Lai CH, Hsu YY (2011) A subtle grey-matter increase in first-episode, drug-naive major depressive disorder with panic disorder after 6 weeks’ duloxetine therapy. Int J Neuropsychopharmacol 14:225–235.  https://doi.org/10.1017/S1461145710000829 CrossRefPubMedGoogle Scholar
  41. 41.
    De Cristofaro MT, Sessarego A, Pupi A, Biondi F, Faravelli C (1993) Brain perfusion abnormalities in drug-naive, lactate-sensitive panic patients, a SPECT study. Biol Psychiatry 33:505–512CrossRefGoogle Scholar
  42. 42.
    Eren I, Tukel R, Polat A, Karaman R, Unal S (2003) Evaluation of regional cerebral blood flow changes in panic disorder with Tc99m-HMPAO SPECT. Psychiatry Res 123:135–143CrossRefGoogle Scholar
  43. 43.
    Bisaga A, Katz JL, Antonini A, Wright CE, Margouleff C, Gorman JM, Eidelberg D (1998) Cerebral glucose metabolism in women with panic disorder. Am J Psychiatry 155:1178–1183CrossRefGoogle Scholar
  44. 44.
    Nordahl TE, Semple WE, Gross M, Mellman TA, Stein MB, Goyer P, King AC, Uhde TW, Cohen RM (1990) Cerebral glucose metabolic differences in patients with panic disorder. Neuropsychopharmacology 3:261–272PubMedGoogle Scholar
  45. 45.
    Lai CH (2012) Increases in amplitude of low-frequency fluctuations in left fronto-parietal area after duloxetine therapy in first-episode, drug-naive, major depressive disorder with panic disorder patients. J Neuropsychiatry Clin Neurosci, 24, E24–E25.  https://doi.org/10.1176/appi.neuropsych.11070157 CrossRefPubMedGoogle Scholar
  46. 46.
    Pannekoek JN, Veer IM, van Tol MJ, van der Werff SJ, Demenescu LR, Aleman A, Veltman DJ, Zitman FG, Rombouts SA, van der Wee NJ (2013) Aberrant limbic and salience network resting-state functional connectivity in panic disorder without comorbidity. J Affect Disord 145:29–35.  https://doi.org/10.1016/j.jad.2012.07.006 CrossRefPubMedGoogle Scholar
  47. 47.
    Demenescu LR, Kortekaas R, Cremers HR, Renken RJ, van Tol MJ, van der Wee NJ, Veltman DJ, den Boer JA, Roelofs K, Aleman A (2013) Amygdala activation and its functional connectivity during perception of emotional faces in social phobia and panic disorder. J Psychiatr Res 47:1024–1031.  https://doi.org/10.1016/j.jpsychires.2013.03.020 CrossRefPubMedGoogle Scholar
  48. 48.
    Dresler T, Guhn A, Tupak SV, Ehlis AC, Herrmann MJ, Fallgatter AJ, Deckert J, Domschke K (2013) Revise the revised? New dimensions of the neuroanatomical hypothesis of panic disorder. J Neural Transm (Vienna) 120:3–29.  https://doi.org/10.1007/s00702-012-0811-1 CrossRefGoogle Scholar
  49. 49.
    Engel KR, Obst K, Bandelow B, Dechent P, Gruber O, Zerr I, Ulrich K, Wedekind D (2016) Functional MRI activation in response to panic-specific, non-panic aversive, and neutral pictures in patients with panic disorder and healthy controls. Eur Arch Psychiatry Clin Neurosci 266:557–566.  https://doi.org/10.1007/s00406-015-0653-6 CrossRefPubMedGoogle Scholar
  50. 50.
    Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223.  https://doi.org/10.1038/nrn2573 CrossRefPubMedGoogle Scholar
  51. 51.
    Goddard AW, Ball SG, Martinez J, Robinson MJ, Yang CR, Russell JM, Shekhar A (2010) Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress Anxiety 27:339–350.  https://doi.org/10.1002/da.20642 CrossRefPubMedGoogle Scholar
  52. 52.
    Kalk NJ, Nutt DJ, Lingford-Hughes AR (2011) The role of central noradrenergic dysregulation in anxiety disorders, evidence from clinical studies. J Psychopharmacol 25:3–16.  https://doi.org/10.1177/0269881110367448 CrossRefPubMedGoogle Scholar
  53. 53.
    Prasko J, Horácek J, Záleský R, Kopecek M, Novák T, Paskova B, Skrdlantová L, Belohlávek O, Höschl C (2004) The change of regional brain metabolism (18FDG PET) in panic disorder during the treatment with cognitive behavioral therapy or antidepressants. Neuro Endocrinol Lett 25:340e348Google Scholar
  54. 54.
    Sakai Y, Kumano H, Nishikawa M, Sakano Y, Kaiya H, Imabayashi E, Ohnishi T, Matsuda H, Yasuda A, Sato A, Diksic M, Kuboki T (2006) Changes in cerebral glucose utilization in patients with panic disorder treated with cognitive-behavioral therapy. Neuroimage 33:218–226CrossRefGoogle Scholar
  55. 55.
    Seo HJ, Choi YH, Chung YA, Rho W, Chae JH (2014) Changes in cerebral blood flow after cognitive behavior therapy in patients with panic disorder, a SPECT study. Neuropsychiatr Dis Treat 10:661–669.  https://doi.org/10.2147/NDT.S58660 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kircher T, Arolt V, Jansen A, Pyka M, Reinhardt I, Kellermann T, Konrad C, Lueken U, Gloster AT, Gerlach AL, Ströhle A, Wittmann A, Pfleiderer B, Wittchen HU, Straube B (2013) Effect of cognitive-behavioral therapy on neural correlates of fear conditioning in panic disorder. Biol Psychiatry 73:93–101.  https://doi.org/10.1016/j.biopsych.2012.07.026 CrossRefPubMedGoogle Scholar
  57. 57.
    Liebscher C, Wittmann A, Gechter J, Schlagenhauf F, Lueken U, Plag J, Straube B, Pfleiderer B, Fehm L, Gerlach AL, Kircher T, Fydrich T, Deckert J, Wittchen HU, Heinz A, Arolt V, Ströhle A (2016) Facing the fear–clinical and neural effects of cognitive behavioural and pharmacotherapy in panic disorder with agoraphobia. Eur Neuropsychopharmacol 26:431–444.  https://doi.org/10.1016/j.euroneuro.2016.01.004 CrossRefPubMedGoogle Scholar
  58. 58.
    Lueken U, Straube B, Konrad C, Wittchen HU, Strohle A, Wittmann A, Pfleiderer B, Uhlmann C, Arolt V, Jansen A, Kircher T (2013) Neural substrates of treatment response to cognitive-behavioral therapy in panic disorder with agoraphobia. Am J Psychiatry 170:1345–1355.  https://doi.org/10.1176/appi.ajp.2013.12111484 CrossRefPubMedGoogle Scholar
  59. 59.
    Straube B, Lueken U, Jansen A, Konrad C, Gloster AT, Gerlach AL, Ströhle A, Wittmann A, Pfleiderer B, Gauggel S, Wittchen U, Arolt V, Kircher T (2014) Neural correlates of procedural variants in cognitive-behavioral therapy, a randomized, controlled multicenter FMRI study. Psychother Psychosom 83:222–233.  https://doi.org/10.1159/000359955 CrossRefPubMedGoogle Scholar
  60. 60.
    Yang Y, Kircher T, Straube B (2014) The neural correlates of cognitive behavioral therapy, recent progress in the investigation of patients with panic disorder. Behav Res The 62:88–96.  https://doi.org/10.1016/j.brat.2014.07.011 CrossRefGoogle Scholar
  61. 61.
    Lueken U, Muehlhan M, Wittchen HU, Kellermann T, Reinhardt I, Konrad C, Lang T, Wittmann A, Ströhle A, Gerlach AL, Ewert A, Kircher T (2011) (Don’t) panic in the scanner! How panic patients with agoraphobia experience a functional magnetic resonance imaging session. Eur Neuropsychopharmacol 21(7):516–525CrossRefGoogle Scholar
  62. 62.
    Hoehn-Saric R, Schlund MW, Wong SH (2004) Effects of citalopram on worry and brain activation in patients with generalized anxiety disorder. Psychiatry Res 131:11–21CrossRefGoogle Scholar
  63. 63.
    Szabo ST, de Montigny C, Blier P (2000) Progressive attenuation of the firing activity of locus coeruleus noradrenergic neurons by sustained administration of selective serotonin reuptake inhibitors. Int J Neuropsychopharmacol 3:1–11CrossRefGoogle Scholar
  64. 64.
    Hahn T, Kircher T, Straube B, Wittchen HU, Konrad C, Ströhle A, Wittmann A, Pfleiderer B, Reif A, Arolt V, Lueken U (2015) Predicting treatment response to cognitive behavioral therapy in panic disorder with agoraphobia by integrating local neural information. JAMA Psychiatry 72:68–74.  https://doi.org/10.1001/jamapsychiatry.2014.1741 CrossRefPubMedGoogle Scholar
  65. 65.
    Bandelow B, Baldwin D, Abelli M, Altamura C, Dell’Osso B, Domschke K, Fineberg NA, Grünblatt E, Jarema M, Maron E, Nutt D, Pini S, Vaghi MM, Wichniak A, Zai G, Riederer P (2016) Biological markers for anxiety disorders, OCD and PTSD—a consensus statement. Part I, Neuroimaging and genetics. World J Biol Psychiatry 17:321–365.  https://doi.org/10.1080/15622975.2016.1181783 CrossRefPubMedGoogle Scholar
  66. 66.
    Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Susanne Neufang
    • 1
    • 2
  • Maximilian J. Geiger
    • 3
    • 4
  • György A. Homola
    • 5
  • Marina Mahr
    • 3
  • Miriam A. Schiele
    • 3
    • 6
  • Andrea Gehrmann
    • 3
  • Brigitte Schmidt
    • 3
  • Agnieszka Gajewska
    • 3
  • Johannes Nowak
    • 7
  • Eva Meisenzahl-Lechner
    • 2
  • Mirko Pham
    • 5
  • Marcel Romanos
    • 1
  • Atae Akhrif
    • 1
  • Katharina Domschke
    • 3
    • 6
  1. 1.Center of Mental Health, Department of Child and Adolescent PsychiatryUniversity of WuerzburgWuerzburgGermany
  2. 2.Department of Psychiatry and PsychotherapyMedical Faculty Heinrich-Heine UniversityDuesseldorfGermany
  3. 3.Center of Mental Health, Department of Psychiatry, Psychosomatics and PsychotherapyUniversity of WuerzburgWuerzburgGermany
  4. 4.Epilepsy Center, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  5. 5.Institute for Diagnostical and Interventional NeuroradiologyUniversity of WuerzburgWuerzburgGermany
  6. 6.Department of Psychiatry and Psychotherapy, Medical Centre, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  7. 7.Institute for Diagnostical and Interventional RadiologyUniversity of WuerzburgWuerzburgGermany

Personalised recommendations