Neural correlates of instrumental responding in the context of alcohol-related cues index disorder severity and relapse risk

  • Daniel J. Schad
  • Maria Garbusow
  • Eva Friedel
  • Christian Sommer
  • Miriam Sebold
  • Claudia Hägele
  • Nadine Bernhardt
  • Stephan Nebe
  • Sören Kuitunen-Paul
  • Shuyan Liu
  • Uta Eichmann
  • Anne Beck
  • Hans-Ulrich Wittchen
  • Henrik Walter
  • Philipp Sterzer
  • Ulrich S. Zimmermann
  • Michael N. Smolka
  • Florian Schlagenhauf
  • Quentin J. M. Huys
  • Andreas Heinz
  • Michael A. RappEmail author
Original Paper


The influence of Pavlovian conditioned stimuli on ongoing behavior may contribute to explaining how alcohol cues stimulate drug seeking and intake. Using a Pavlovian-instrumental transfer task, we investigated the effects of alcohol-related cues on approach behavior (i.e., instrumental response behavior) and its neural correlates, and related both to the relapse after detoxification in alcohol-dependent patients. Thirty-one recently detoxified alcohol-dependent patients and 24 healthy controls underwent instrumental training, where approach or non-approach towards initially neutral stimuli was reinforced by monetary incentives. Approach behavior was tested during extinction with either alcohol-related or neutral stimuli (as Pavlovian cues) presented in the background during functional magnetic resonance imaging (fMRI). Patients were subsequently followed up for 6 months. We observed that alcohol-related background stimuli inhibited the approach behavior in detoxified alcohol-dependent patients (t = − 3.86, p < .001), but not in healthy controls (t = − 0.92, p = .36). This behavioral inhibition was associated with neural activation in the nucleus accumbens (NAcc) (t(30) = 2.06, p < .05). Interestingly, both the effects were only present in subsequent abstainers, but not relapsers and in those with mild but not severe dependence. Our data show that alcohol-related cues can acquire inhibitory behavioral features typical of aversive stimuli despite being accompanied by a stronger NAcc activation, suggesting salience attribution. The fact that these findings are restricted to abstinence and milder illness suggests that they may be potential resilience factors.

Clinical trial: LeAD study,, NCT01679145.


Alcohol dependence Human neuroimaging Nucleus accumbens Pavlovian-instrumental transfer Relapse 



This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG, FOR 1617: Grants HE 2597/13-1 and 13-2, HE 2597/14-1 and 14-2, HE 2597/15-1 and 15-2, RA 1047/2-1 and 2-2, SCHA 1971/1-2, SCHL 1969/2-1 and 2-2, SM 80/7-1 and 7-2, WI 709/10-1 and 10-2, and ZI 1119/3-1 and 3-2). Eva Friedel is a participant in the BIH Charité Clinician Scientist Program funded by the Charité-Universitätsmedizin and the Berlin Institute of Health. Moreover, we thank the LeAD study teams in Berlin and Dresden for all the work and help regarding data collection! We would also like to gratefully thank Carolin Wackerhagen for producing the alcohol- and water-related background stimuli! Finally, we are grateful to Lee Hogarth for discussing the nature of our PIT effects, and for interference account predictions. MR-imaging for this study was performed at the Berlin Center for Advanced Neuroimaging (BCAN) and Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden.

Author contributions

AB, AH, MAR, MNS, QJMH, USZ were responsible for the study concept and design. CS, DJS, HW, MG, MS, NB, PS and QJMH implemented and piloted the PIT (behavioral and fMRI) paradigm. AH, CH, CS, EF, MG, MS, UE, and USZ recruited alcohol-dependent patients and assessed the follow-up data. HUW and SKP were responsible for the assessment of questionnaires. SN set up a preprocessing pipeline for the imaging data. DJS, EF, FS and MG performed the first- and second-level analyses on fMRI data. DJS and MG performed further statistical analyses with support of AH, MAR and QJMH. AH, DJS, EF, FS, MG and MS drafted the manuscript. CS, HUW, HW, MAR, MNS, NB, PS, QJMH, SKP, SL, SN and USZ provided critical revision of the manuscript for important intellectual content. All the authors critically reviewed content and approved the final version for publication.

Compliance with ethical standards

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Supplementary material

406_2017_860_MOESM1_ESM.docx (733 kb)
Supplementary material 1 (DOCX 21 KB)


  1. 1.
    Heinz A, Löber S, Georgi A, Wrase J, Hermann D, Rey ER, Wellek S, Mann K (2003) Reward craving and withdrawal relief craving: assessment of different motivational pathways to alcohol intake. Alcohol Alcohol 38:35–39CrossRefGoogle Scholar
  2. 2.
    Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398:567–570CrossRefGoogle Scholar
  3. 3.
    Sanchis-Segura C, Spanagel R (2006) REVIEW: behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 11:2–38CrossRefGoogle Scholar
  4. 4.
    Corbit LH, Janak PH (2007) Ethanol-associated cues produce general pavlovian-instrumental transfer. Alcohol Clin Exp Res 31:766–774CrossRefGoogle Scholar
  5. 5.
    Hogarth L, Dickinson A, Wright A, Kouvaraki M, Duka T (2007) The role of drug expectancy in the control of human drug seeking. J Exp Psychol Anim Behav Process 33:484–496CrossRefGoogle Scholar
  6. 6.
    Barker JM, Torregrossa MM, Taylor JR (2012) Low prefrontal PSA-NCAM confers risk for alcoholism-related behavior. Nat Neurosci 15:1356–1358CrossRefGoogle Scholar
  7. 7.
    Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489CrossRefGoogle Scholar
  8. 8.
    Glasner SV, Overmier JB, Balleine BW (2005) The role of Pavlovian cues in alcohol seeking in dependent and nondependent rats. J Stud Alcohol 66:53–61CrossRefGoogle Scholar
  9. 9.
    Garbusow M, Schad DJ, Sebold M, Friedel E, Bernhardt N, Koch SP, Steinacher B, Kathmann N, Geurts DE, Sommer C, Muller DK, Nebe S, Paul S, Wittchen HU, Zimmermann US, Walter H, Smolka MN, Sterzer P, Rapp MA, Huys QJ, Schlagenhauf F, Heinz A (2016) Pavlovian-to-instrumental transfer effects in the nucleus accumbens relate to relapse in alcohol dependence. Addict Biol 21:719–731CrossRefGoogle Scholar
  10. 10.
    Haber SN, Behrens TE (2014) The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders. Neuron 83:1019–1039CrossRefGoogle Scholar
  11. 11.
    Huys QJ, Tobler PN, Hasler G, Flagel SB (2014) The role of learning-related dopamine signals in addiction vulnerability. Prog Brain Res 211:31–77CrossRefGoogle Scholar
  12. 12.
    Corbit LH, Balleine BW (2005) Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J Neurosci 25:962–970CrossRefGoogle Scholar
  13. 13.
    Corbit LH, Fischbach SC, Janak PH (2016) Nucleus accumbens core and shell are differentially involved in general and outcome-specific forms of Pavlovian-instrumental transfer with alcohol and sucrose rewards. Eur J Neurosci 43:1229–1236CrossRefGoogle Scholar
  14. 14.
    Corbit LH, Balleine BW (2011) The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J Neurosci 31:11786–11794CrossRefGoogle Scholar
  15. 15.
    Bray S, Rangel A, Shimojo S, Balleine B, O’Doherty JP (2008) The neural mechanisms underlying the influence of pavlovian cues on human decision making. J Neurosci 28:5861–5866CrossRefGoogle Scholar
  16. 16.
    Geurts DE, Huys QJ, den Ouden HE, Cools R (2013) Aversive pavlovian control of instrumental behavior in humans. J Cogn Neurosci 25:1428–1441CrossRefGoogle Scholar
  17. 17.
    Talmi D, Seymour B, Dayan P, Dolan RJ (2008) Human pavlovian-instrumental transfer. J Neurosci 28:360–368CrossRefGoogle Scholar
  18. 18.
    Dayan P (2009) Dopamine, reinforcement learning, and addiction. Pharmacopsychiatry 42(Suppl 1):S56–S65CrossRefGoogle Scholar
  19. 19.
    Beck A, Schlagenhauf F, Wustenberg T, Hein J, Kienast T, Kahnt T, Schmack K, Hagele C, Knutson B, Heinz A, Wrase J (2009) Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiat 66:734–742CrossRefGoogle Scholar
  20. 20.
    Heinz A, Siessmeier T, Wrase J, Buchholz HG, Grunder G, Kumakura Y, Cumming P, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P (2005) Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 162:1515–1520CrossRefGoogle Scholar
  21. 21.
    Park SQ, Kahnt T, Beck A, Cohen MX, Dolan RJ, Wrase J, Heinz A (2010) Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. J Neurosci 30:7749–7753CrossRefGoogle Scholar
  22. 22.
    Wrase J, Schlagenhauf F, Kienast T, Wustenberg T, Bermpohl F, Kahnt T, Beck A, Strohle A, Juckel G, Knutson B, Heinz A (2007) Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage 35:787–794CrossRefGoogle Scholar
  23. 23.
    Heinz A, Schlagenhauf F (2010) Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophrena Bull 36:472–485CrossRefGoogle Scholar
  24. 24.
    Zink CF, Pagnoni G, Martin-Skurski ME, Chappelow JC, Berns GS (2004) Human striatal responses to monetary reward depend on saliency. Neuron 42:509–517CrossRefGoogle Scholar
  25. 25.
    Beck A, Wüstenberg T, Genauck A, Wrase J, Schlagenhauf F, Smolka MN, Mann K, Heinz A (2012) Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients. Arch Gen Psychiatry 69:842–852CrossRefGoogle Scholar
  26. 26.
    Vollstädt-Klein S, Kobiella A, Buhler M, Graf C, Fehr C, Mann K, Smolka MN (2011) Severity of dependence modulates smokers’ neuronal cue reactivity and cigarette craving elicited by tobacco advertisement. Addict Biol 16:166–175CrossRefGoogle Scholar
  27. 27.
    Ostlund SB, Maidment NT, Balleine BW (2010) Alcohol-paired contextual cues produce an immediate and selective loss of goal-directed action in rats. Front Integr Neurosci 4:19Google Scholar
  28. 28.
    Jacobi F, Mack S, Gerschler A, Scholl L, Hofler M, Siegert J, Burkner A, Preiss S, Spitzer K, Busch M, Hapke U, Gaebel W, Maier W, Wagner M, Zielasek J, Wittchen HU (2013) The design and methods of the mental health module in the German Health Interview and Examination Survey for Adults (DEGS1-MH). Int J Methods Psychiatr Res 22:83–99CrossRefGoogle Scholar
  29. 29.
    Wittchen H-U, Pfister H (1997) DIA-X-Interviews: manual Für Screening-Verfahren Und Interview; Interviewheft Längsschnittuntersuchung (DIA-X-Lifetime); Ergänzungsheft (DIA-X-Lifetime). In: Interviewheft Querschnittuntersuchung (DIA-X-12 Monate); Ergänzungsheft (DIA-X-12 Monate); PC-Programm Zur Durchführung Des Interviews (Längs- Und Querschnittuntersuchung); Auswertungsprogramm. Swets & Zeitlinger, FrankfurtGoogle Scholar
  30. 30.
    Garbusow M, Schad DJ, Sommer C, Jünger E, Sebold M, Friedel E, Wendt J, Kathmann N, Schlagenhauf F, Zimmermann US, Heinz A, Huys QJ, Rapp MA (2014) Pavlovian-to-instrumental transfer in alcohol dependence: a pilot study. Neuropsychobiology 70:111–121CrossRefGoogle Scholar
  31. 31.
    Huys QJ, Cools R, Golzer M, Friedel E, Heinz A, Dolan RJ, Dayan P (2011) Disentangling the roles of approach, activation and valence in instrumental and pavlovian responding. PLoS Comput Biol 7:e1002028CrossRefGoogle Scholar
  32. 32.
    Sullivan JT, Sykora K, Schneiderman J, Naranjo CA, Sellers EM (1989) Assessment of alcohol withdrawal: the revised clinical institute withdrawal assessment for alcohol scale (CIWA-Ar). Br J Addict 84:1353–1357CrossRefGoogle Scholar
  33. 33.
    Sobell LC, Sobell MB (1992) Timeline Follow-back: a technique for assessing self-reported ethanol consumption. In: Allen J, Litten RZ (eds) Measuring alcohol consumption: psychosocial and biological methods. Humana, Totowa, pp 41–72CrossRefGoogle Scholar
  34. 34.
    Skinner HA, Horn JL (1984) Alcohol dependence scale (ADS): users guide. Addiction Research Foundation, TorontoGoogle Scholar
  35. 35.
    Anton RF, Moak DH, Latham P (1995) The Obsessive Compulsive Drinking Scale: a self-rated instrument for the quantification of thoughts about alcohol and drinking behavior. Alcohol Clin Exp Res 19:92–99CrossRefGoogle Scholar
  36. 36.
    Mann K, Ackermann K (2000) Die OCDS-G: psychometrische kennwerte der deutschen version der obsessive compulsive drinking scale. Sucht 46:90–100CrossRefGoogle Scholar
  37. 37.
    Stuppäck C, Barnas C, Falk M, Günther V, Hummer M, Oberbauer H, Pycha R, Whitworth A, Fleischhacker WW (1995) Eine modifizierte und ins deutsche über-setzte Form der Clinical Institut Withdrawal Assessment for Alcohol Scale (CIWA-A). Wiener Zeitschrift für Suchtforschung 18:39–48Google Scholar
  38. 38.
    Bleich S, Havemann-Reinecke U, Kornhuber J (2002) Der Fagerström-Test für Nikotinabhängigkeit (FTNA). Göttingen, HogrefeGoogle Scholar
  39. 39.
    Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO (1991) The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom tolerance questionnaire. Br J Addict 86:1119–1127CrossRefGoogle Scholar
  40. 40.
    Lehrl S, Triebig G, Fischer B (1995) Multiple choice vocabulary test MWT as a valid and short test to estimate premorbid intelligence. Acta Neurol Scand 91:335–345CrossRefGoogle Scholar
  41. 41.
    Daw ND, Gershman S, Seymour B, Dayan P, Dolan R (2011) Modelbased influences on humans’ choices and striatal prediction errors. Neuron 69:1204–1215CrossRefGoogle Scholar
  42. 42.
    MATLAB version 7.12.0 (2011). The MathWorks Inc, MassachusettsGoogle Scholar
  43. 43.
    Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436CrossRefGoogle Scholar
  44. 44.
    Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442CrossRefGoogle Scholar
  45. 45.
    R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  46. 46.
    Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–7, Accessed 15 Dec 2017
  47. 47.
    Kuznetsova A, Brockhoff PB, Christensen RB (2014) lmerTest Package: tests in linear mixed effects models. J Stat Softw 82:672Google Scholar
  48. 48.
    Welch BL (1947) The generalisation of student’s problems when several different population variances are involved. Biometrika 34:28–35Google Scholar
  49. 49.
    Iglesias S, Mathys C, Brodersen KH, Kasper L, Piccirelli M, den Ouden HE, Stephan KE (2013) Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron 80:519–530CrossRefGoogle Scholar
  50. 50.
    Spruyt A, De Houwer J, Tibboel H, Verschuere B, Crombez G, Verbanck P, Hanak C, Brevers D, Noel X (2013) On the predictive validity of automatically activated approach/avoidance tendencies in abstaining alcohol-dependent patients. Drug Alcohol Depend 127:81–86CrossRefGoogle Scholar
  51. 51.
    Townshend JM, Duka T (2007) Avoidance of alcohol-related stimuli in alcohol-dependent inpatients. Alcohol Clin Exp Res 31:1349–1357CrossRefGoogle Scholar
  52. 52.
    Vollstädt-Klein S, Loeber S, von der Goltz C, Mann K, Kiefer F (2009) Avoidance of alcohol-related stimuli increases during the early stage of abstinence in alcohol-dependent patients. Alcohol Alcohol 44:458–463CrossRefGoogle Scholar
  53. 53.
    Wiers RW, Eberl C, Rinck M, Becker ES, Lindenmeyer J (2011) Retraining automatic action tendencies changes alcoholic patients’ approach bias for alcohol and improves treatment outcome. Psychol Sci 22:490–497CrossRefGoogle Scholar
  54. 54.
    Houben K, Havermans RC, Wiers RW (2010) Learning to dislike alcohol: conditioning negative implicit attitudes toward alcohol and its effect on drinking behavior. Psychopharmacology 211:79–86CrossRefGoogle Scholar
  55. 55.
    Grüsser SM, Heinz A, Raabe A, Wessa M, Podschus J, Flor H (2002) Stimulus-induced craving and startle potentiation in abstinent alcoholics and controls. Eur Psychiatry 17:188–193CrossRefGoogle Scholar
  56. 56.
    Eder AB, Dignath D (2016) Asymmetrical effects of posttraining outcome revaluation on outcome-selective Pavlovian-to-instrumental transfer of control in human adults. Learn Motiv 54:12–21CrossRefGoogle Scholar
  57. 57.
    Huys QJ, Golzer M, Friedel E, Heinz A, Cools R, Dayan P, Dolan RJ (2016) The specificity of Pavlovian regulation is associated with recovery from depression. Psychol Med 46:1027–1035CrossRefGoogle Scholar
  58. 58.
    Baxter BW, Hinson RE (2001) Is smoking automatic? Demands of smoking behavior on attentional resources. J Abnorm Psychol 110:59–66CrossRefGoogle Scholar
  59. 59.
    Cox WM, Hogan LM, Kristian MR, Race JH (2002) Alcohol attentional bias as a predictor of alcohol abusers’ treatment outcome. Drug Alcohol Depend 68:237–243CrossRefGoogle Scholar
  60. 60.
    Hogarth LC, Mogg K, Bradley BP, Duka T, Dickinson A (2003) Attentional orienting towards smoking-related stimuli. Behav Pharmacol 14:153–160CrossRefGoogle Scholar
  61. 61.
    Mogg K, Field M, Bradley BP (2005) Attentional and approach biases for smoking cues in smokers: an investigation of competing theoretical views of addiction. Psychopharmacology 180:333–341CrossRefGoogle Scholar
  62. 62.
    Bühringer G, Wittchen HU, Gottlebe K, Kufeld C, Goschke T (2008) Why people change? The role of cognitive-control processes in the onset and cessation of substance abuse disorders. Int J Methods Psychiatr Res 17(Suppl 1):S4-S15Google Scholar
  63. 63.
    Lewis AH, Niznikiewicz MA, Delamater AR, Delgado MR (2013) Avoidance-based human Pavlovian-to-instrumental transfer. Eur J Neurosci 38:3740–3748CrossRefGoogle Scholar
  64. 64.
    Seymour B, O’Doherty JP, Koltzenburg M, Wiech K, Frackowiak R, Friston K, Dolan R (2005) Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nat Neurosci 8:1234–1240CrossRefGoogle Scholar
  65. 65.
    Grüsser SM, Mörsen CP, Wolfling K, Flor H (2007) The relationship of stress, coping, effect expectancies and craving. Eur Addict Res 13:31–38CrossRefGoogle Scholar
  66. 66.
    Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser SM, Flor H, Braus DF, Buchholz HG, Grunder G, Schreckenberger M, Smolka MN, Rosch F, Mann K, Bartenstein P (2004) Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 161:1783–1789CrossRefGoogle Scholar
  67. 67.
    Boileau I, Payer D, Houle S, Behzadi A, Rusjan PM, Tong J, Wilkins D, Selby P, George TP, Zack M, Furukawa Y, McCluskey T, Wilson AA, Kish SJ (2012) Higher binding of the dopamine D3 receptor-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin in methamphetamine polydrug users: a positron emission tomography study. J Neurosci 32:1353–1359CrossRefGoogle Scholar
  68. 68.
    Volkow ND, Wang GJ, Telang F, Fowler JS, Alexoff D, Logan J, Jayne M, Wong C, Tomasi D (2014) Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc Natl Acad Sci USA 111:E3149–E3156CrossRefGoogle Scholar
  69. 69.
    Sullivan EV, Pfefferbaum A (2014) The neurobiology of alcohol craving and relapse. Alcohol Nerv Syst Handb Clin Neurol 125:355–368CrossRefGoogle Scholar
  70. 70.
    Charlet K, Beck A, Jorde A, Wimmer L, Vollstädt-Klein S, Gallinat J, Walter H, Kiefer F, Heinz A (2014) Increased neural activity during high working memory load predicts low relapse risk in alcohol dependence. Addict Biol 19:402–414CrossRefGoogle Scholar
  71. 71.
    Prom-Wormley EC, Ebejer J, Dick DM, Bowers MS (2017) The genetic epidemiology of substance use disorder: a review. Drug Alcohol Depend 180:241–259CrossRefGoogle Scholar
  72. 72.
    Hogarth L (2012) Goal-directed and transfer-cue-elicited drug-seeking are dissociated by pharmacotherapy: evidence for independent additive controllers. J Exp Psychol Anim Behav Process 38:266–278CrossRefGoogle Scholar
  73. 73.
    Hogarth L, Chase HW (2011) Parallel goal-directed and habitual control of human drug-seeking: implications for dependence vulnerability. J Exp Psychol Anim Behav Process 37:261–276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniel J. Schad
    • 1
    • 2
  • Maria Garbusow
    • 1
    • 3
  • Eva Friedel
    • 1
    • 11
  • Christian Sommer
    • 4
  • Miriam Sebold
    • 1
    • 3
  • Claudia Hägele
    • 1
  • Nadine Bernhardt
    • 5
  • Stephan Nebe
    • 5
  • Sören Kuitunen-Paul
    • 6
  • Shuyan Liu
    • 1
  • Uta Eichmann
    • 7
  • Anne Beck
    • 1
  • Hans-Ulrich Wittchen
    • 6
    • 12
  • Henrik Walter
    • 1
  • Philipp Sterzer
    • 1
  • Ulrich S. Zimmermann
    • 4
  • Michael N. Smolka
    • 5
  • Florian Schlagenhauf
    • 1
    • 8
  • Quentin J. M. Huys
    • 9
    • 10
  • Andreas Heinz
    • 1
  • Michael A. Rapp
    • 2
    Email author
  1. 1.Department of Psychiatry and PsychotherapyCharité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
  2. 2.Social and Preventive Medicine, Humanwissenschaftliche Fakultät, Area of Excellence Cognitive SciencesUniversity of PotsdamPotsdamGermany
  3. 3.Department of PsychologyHumboldt-Universität zu BerlinBerlinGermany
  4. 4.Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav CarusTechnische Universität DresdenDresdenGermany
  5. 5.Department of Psychiatry and Neuroimaging CenterTechnische Universität DresdenDresdenGermany
  6. 6.Institute of Clinical Psychology and PsychotherapyTechnische Universität DresdenDresdenGermany
  7. 7.Department of Psychiatry and PsychotherapyVivantes Wenckebach-KlinikumBerlinGermany
  8. 8.Max Planck Fellow Group ‘Cognitive and Affective Control of Behavioral Adaptation’Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  9. 9.Translational Neuromodeling Unit, Department of Biomedical EngineeringETH Zürich and University of ZürichZurichSwitzerland
  10. 10.Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of PsychiatryUniversity of ZurichZurichSwitzerland
  11. 11.Berlin Institute of Health (BIH)BerlinGermany
  12. 12.Department of Psychiatry and PsychotherapyLudwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations