Advertisement

Relationships between low-grade peripheral inflammation and psychotropic drugs in schizophrenia: results from the national FACE-SZ cohort

  • G. Fond
  • N. Resseguier
  • F. Schürhoff
  • O. Godin
  • M. Andrianarisoa
  • L. Brunel
  • E. Bulzacka
  • B. Aouizerate
  • F. Berna
  • D. Capdevielle
  • I. Chereau
  • T. D’Amato
  • C. Dubertret
  • J. Dubreucq
  • C. Faget
  • F. Gabayet
  • C. Lançon
  • P. M. Llorca
  • J. Mallet
  • D. Misdrahi
  • C. Passerieux
  • R. Rey
  • A. Schandrin
  • M. Urbach
  • P. Vidailhet
  • L. Boyer
  • M. Leboyer
  • the FACE-SZ (FondaMental Academic Centers of Expertise for Schizophrenia) group
Original Paper

Abstract

Low-grade inflammation has repeatedly been associated with schizophrenia (SZ) and in particular with cognitive impairment. Female gender, overweight and tobacco smoking have been suggested as risk factors to increase inflammation while preclinical inconsistent findings have been found regarding the association with psychotropic drugs. The aim of this study was to explore if psychotropic drugs were associated with inflammation in SZ and to determine which psychotropic drug was associated with inflammation in stable SZ subjects while considering clinical confounding factors. Participants were consecutively included in the network of the FondaMental Expert Centers for Schizophrenia and received a thorough clinical assessment, including recording of current treatment. High-sensitivity CRP (hs-CRP) was measured for each participant as a proxy to define peripheral low-grade inflammation. The zero-inflated Poisson regression model estimated the relationship between low-grade inflammation and psychotropic drug. Four hundred and five stabilized, community-dwelling SZ subjects (mean age = 32.6 years, 74% male gender) have been included. In total, 148 participants (36.5%) were found with undetectable blood hs-CRP level. The probability of having an undetectable CRP was associated with a lower body mass index (p < 0.0001) and no cyamemazine add-on antipsychotic therapy (p = 0.001). The other 257 participants (63.5%) were found to have low-grade inflammation (hs-CRP > 0 mg/L). Low-grade inflammation was significantly associated with female gender (p = 0.004), higher body mass index (p < 0.0001), current tobacco smoking (p < 0.0001), clomipramine (p = 0.04), quetiapine (p < 0.0001) and hypnotic (p = 0.0006) consumption while decreased hs-CRP blood levels was associated with aripiprazole (p = 0.004) and valproate/valpromide (p = 0.03) consumption. The present study suggests that some psychotropic drugs (quetiapine, cyamemazine, clomipramine) may be associated with increased peripheral low-grade inflammation in SZ patients while others (aripiprazole, valproate) may be associated with decreased peripheral low-grade inflammation. These results should be replicated in SZ and non-SZ populations and the biological underpinnings should be further explored.

Keywords

Schizophrenia Inflammation Antipsychotic Antidepressant Valproate 

Notes

Acknowledgements

The FACE-SZ group: Andrianarisoa Md,l, Aouizerate Ba,l, MD PhD, Berna Fb,l, MD PhD, Blanc Oc,l, Msc, Brunel Ld,l, Msc, Bulzacka Ed,l, Msc, Capdevielle De,l, MD PhD, Chereau-Boudet Ic,l, MD, Chesnoy-Servanin Gf,l, Msc, Danion JMb,l, MD, D’Amato Tf,l, MD PhD, Deloge Ag,l, MD PhD, Delorme Ch,l, Msc, Denizot Hc,l, MD, Dorey JMf,l, MD, Dubertret Ci,l, MD PhD, Dubreucq Jh,l, MD, Faget Cj,l, MD, Fluttaz Ch,l, Msc, Fond Gd,l, MD, Fonteneau Sk,l, Msc, Gabayet Fh,l, Msc, Giraud-Baro Eh,l, MD, Hardy-Bayle MCk,l, MD PhD, Lacelle Dc,l, Msc, Lançon Cj,l, MD PhD, Laouamri Hl, Msc, Leboyer Md,l, MD PhD, Le Gloahec Td,l, Msc, Le Strat Yi,l, MD PhD, Llorcac,l PM, MD PhD, Mallet Ji,l, Metairie Ej,l, Msc, Misdrahi Dg,l, MD, Offerlin-Meyer Ib,l, PhD, Passerieux Ck,l, MD PhD, Peri Pj,l, Msc, Pires Sc,l, Msc, Portalier Ci,l, Msc, Rey Rf,l, MD, Roman Ch,l, Msc, Sebilleau Mk,l, Msc, Schandrin Ae,l, MD, Schürhoff Fd,l, MD PhD, Tessier Ag,l, Msc, Tronche AMc,l, MD, Urbach Mk,l, MD, Vaillant Fj,l, Msc, Vehier Af,l, Msc, Vidailhet Pb,l, MD PhD, Vilain Jd,l, MD, Vilà Eg,l, Msc, Yazbek He,l, PhD, Zinetti-Bertschy Ab,l, Msc.

aCentre Hospitalier Charles Perrens, F-33076 Bordeaux, France; Université de Bordeaux, Inserm, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France

bHôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France

cCMP B, CHU, EA 7280 Faculté de Médecine, Université d’Auvergne, BP 69 63003 Clermont-Ferrand Cedex 1

dINSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France

eService Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France.

fINSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 bd Pinel, BP 30039, 69678 Bron Cedex, France

gCentre Hospitalier Charles Perrens, F-33076 Bordeaux, France; Université de Bordeaux, CNRS UMR 5287-INCIA

hCentre Référent de Réhabilitation Psychosociale, CH Alpes Isère, Grenoble, France

iAP-HP, Department of Psychiatry, Louis Mourier Hospital, Colombes, Inserm U894 Université Paris Diderot, Sorbonne Paris Cité, Faculté de médecine, France

jAssistance Publique des Hôpitaux de Marseille (AP-HM), pôle universitaire de psychiatrie, Marseille, France

kService de psychiatrie d’adulte, Centre Hospitalier de Versailles, Le Chesnay, EA 4047 HANDIReSP, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Versailles, France

lFondation Fondamental

This work was funded by AP-HP (Assistance Publique des Hôpitaux de Paris), Fondation FondaMental (RTRS Santé Mentale), by the Investissements d’Avenir program managed by the ANR under reference ANR-11-IDEX-0004-02 and ANR-10-COHO-10-01, and by INSERM (Institut National de la Santé et de la Recherche Médicale).

We express all our thanks to the nurses, and to the patients who were included in the present study. We thank Hakim Laouamri, and his team (Stéphane Beaufort, Seif Ben Salem, Karmène Souyris, Victor Barteau and Mohamed Laaidi) for the development of the FACE-SZ computer interface, data management, quality control and regulatory aspects.

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

References

  1. 1.
    Strawbridge R, Arnone D, Danese A et al (2015) Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol 25:1532–1543CrossRefPubMedGoogle Scholar
  2. 2.
    Valkanova V, Ebmeier KP, Allan CL (2013) CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150:736–744.  https://doi.org/10.1016/j.jad.2013.06.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Dickerson F, Stallings C, Origoni A et al (2013) Elevated C-reactive protein and cognitive deficits in individuals with bipolar disorder. J Affect Disord 150:456–459CrossRefPubMedGoogle Scholar
  4. 4.
    Fond G, d’Albis M-A, Jamain S et al (2015) The promise of biological markers for treatment response in first-episode psychosis: a systematic review. Schizophr Bull 41:559–573.  https://doi.org/10.1093/schbul/sbv002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lopresti AL, Maker GL, Hood SD, Drummond PD (2014) A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog Neuropsychopharmacol Biol Psychiatry 48:102–111.  https://doi.org/10.1016/j.pnpbp.2013.09.017 CrossRefPubMedGoogle Scholar
  6. 6.
    Fernandes BS, Steiner J, Bernstein H-G et al (2016) C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: meta-analysis and implications. Mol Psychiatry 21:554–564.  https://doi.org/10.1038/mp.2015.87 CrossRefPubMedGoogle Scholar
  7. 7.
    Inoshita M, Numata S, Tajima A et al (2016) A significant causal association between C-reactive protein levels and schizophrenia. Sci Rep 6:26105.  https://doi.org/10.1038/srep26105 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bulzacka E, Boyer L, Schürhoff F et al (2016) Chronic peripheral inflammation is associated with cognitive impairment in schizophrenia: results from the multicentric FACE-SZ dataset. Schizophr Bull.  https://doi.org/10.1093/schbul/sbw029 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Fond G, Hamdani N, Kapczinski F et al (2014) Effectiveness and tolerance of anti-inflammatory drugs’ add-on therapy in major mental disorders: a systematic qualitative review. Acta Psychiatr Scand 129:163–179.  https://doi.org/10.1111/acps.12211 CrossRefPubMedGoogle Scholar
  10. 10.
    Nitta M, Kishimoto T, Müller N et al (2013) Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: a meta-analytic investigation of randomized controlled trials. Schizophr Bull 39:1230–1241.  https://doi.org/10.1093/schbul/sbt070 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sommer IE, van Westrhenen R, Begemann MJ et al (2013) Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull 40:181–191 (sbt139) CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Al-Amin MM, Nasir Uddin MM, Mahmud Reza H (2013) Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin Psychopharmacol Neurosci 11:144–151.  https://doi.org/10.9758/cpn.2013.11.3.144 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    da Cruz Jung IE, Machado AK, da Cruz IBM et al (2016) Haloperidol and Risperidone at high concentrations activate an in vitro inflammatory response of RAW 264.7 macrophage cells by induction of apoptosis and modification of cytokine levels. Psychopharmacology 233:1715–1723.  https://doi.org/10.1007/s00213-015-4079-7 CrossRefPubMedGoogle Scholar
  14. 14.
    de Witte L, Tomasik J, Schwarz E et al (2014) Cytokine alterations in first-episode schizophrenia patients before and after antipsychotic treatment. Schizophr Res 154:23–29.  https://doi.org/10.1016/j.schres.2014.02.005 CrossRefPubMedGoogle Scholar
  15. 15.
    Handley R, Mondelli V, Zelaya F et al (2016) Effects of antipsychotics on cortisol, interleukin-6 and hippocampal perfusion in healthy volunteers. Schizophr Res.  https://doi.org/10.1016/j.schres.2016.03.039 CrossRefPubMedGoogle Scholar
  16. 16.
    Kato T, Monji A, Hashioka S, Kanba S (2007) Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr Res 92:108–115.  https://doi.org/10.1016/j.schres.2007.01.019 CrossRefPubMedGoogle Scholar
  17. 17.
    Lin E-JD, Lee NJ, Slack K et al (2006) Distinct endocrine effects of chronic haloperidol or risperidone administration in male rats. Neuropharmacology 51:1129–1136.  https://doi.org/10.1016/j.neuropharm.2006.07.006 CrossRefPubMedGoogle Scholar
  18. 18.
    Miller BJ, Buckley P, Seabolt W et al (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70:663–671CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Morag A, Oved K, Gurwitz D (2013) Sex differences in human lymphoblastoid cells sensitivities to antipsychotic drugs. J Mol Neurosci MN 49:554–558.  https://doi.org/10.1007/s12031-012-9852-z CrossRefPubMedGoogle Scholar
  20. 20.
    Shin H, Kim J, Song J-H (2015) Clozapine and olanzapine inhibit proton currents in BV2 microglial cells. Eur J Pharmacol 755:74–79.  https://doi.org/10.1016/j.ejphar.2015.03.003 CrossRefPubMedGoogle Scholar
  21. 21.
    Sugino H, Futamura T, Mitsumoto Y et al (2009) Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 33:303–307.  https://doi.org/10.1016/j.pnpbp.2008.12.006 CrossRefPubMedGoogle Scholar
  22. 22.
    Todorović N, Tomanović N, Gass P, Filipović D (2016) Olanzapine modulation of hepatic oxidative stress and inflammation in socially isolated rats. Eur J Pharm Sci 81:94–102.  https://doi.org/10.1016/j.ejps.2015.10.010 CrossRefPubMedGoogle Scholar
  23. 23.
    Valera E, Ubhi K, Mante M et al (2014) Antidepressants reduce neuroinflammatory responses and astroglial alpha-synuclein accumulation in a transgenic mouse model of multiple system atrophy. Glia 62:317–337.  https://doi.org/10.1002/glia.22610 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang XY, Zhou DF, Cao LY et al (2005) Cortisol and cytokines in chronic and treatment-resistant patients with schizophrenia: association with psychopathology and response to antipsychotics. Neuropsychopharmacology 30:1532–1538.  https://doi.org/10.1038/sj.npp.1300756 CrossRefPubMedGoogle Scholar
  25. 25.
    Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36:2452–2459CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hiles SA, Baker AL, de Malmanche T, Attia J (2012) Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychol Med 42:2015–2026.  https://doi.org/10.1017/S0033291712000128 CrossRefPubMedGoogle Scholar
  27. 27.
    Strawbridge R, Arnone D, Danese A et al (2015) Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 25:1532–1543.  https://doi.org/10.1016/j.euroneuro.2015.06.007 CrossRefGoogle Scholar
  28. 28.
    Fond G, Godin O, Brunel L et al (2016) Peripheral sub-inflammation is associated with antidepressant consumption in schizophrenia. results from the multi-center FACE-SZ data set. J Affect Disord 191:209–215.  https://doi.org/10.1016/j.jad.2015.11.017 CrossRefPubMedGoogle Scholar
  29. 29.
    van den Ameele S, van Diermen L, Staels W et al (2016) The effect of mood-stabilizing drugs on cytokine levels in bipolar disorder: a systematic review. J Affect Disord 203:364–373.  https://doi.org/10.1016/j.jad.2016.06.016 CrossRefPubMedGoogle Scholar
  30. 30.
    Lee S-Y, Chen S-L, Chang Y-H et al (2014) The effects of add-on low-dose memantine on cytokine levels in bipolar II depression: a 12-week double-blind, randomized controlled trial. J Clin Psychopharmacol 34:337–343.  https://doi.org/10.1097/JCP.0000000000000109 CrossRefPubMedGoogle Scholar
  31. 31.
    Maes M, Bosmans E, Calabrese J et al (1995) Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res 29:141–152CrossRefPubMedGoogle Scholar
  32. 32.
    El-Mowafy AM, Katary MM, Pye C et al (2016) Novel molecular triggers underlie valproate-induced liver injury and its alleviation by the omega-3 fatty acid DHA: role of inflammation and apoptosis. Heliyon 2:e00130.  https://doi.org/10.1016/j.heliyon.2016.e00130 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Macritchie K, Geddes JR, Scott J et al (2003) Valproate for acute mood episodes in bipolar disorder. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD004052 PubMedCrossRefGoogle Scholar
  34. 34.
    Yang Y, Kozloski M (2011) Sex differences in age trajectories of physiological dysregulation: inflammation, metabolic syndrome, and allostatic load. J Gerontol A Biol Sci Med Sci 66:493–500.  https://doi.org/10.1093/gerona/glr003 CrossRefPubMedGoogle Scholar
  35. 35.
    Miller BJ, Culpepper N, Rapaport MH (2014) C-reactive protein levels in schizophrenia. Clin Schizophr Relat Psychoses 7:223–230CrossRefPubMedGoogle Scholar
  36. 36.
    MacCallum RC, Zhang S, Preacher KJ, Rucker DD (2002) On the practice of dichotomization of quantitative variables. Psychol Methods 7:19–40CrossRefPubMedGoogle Scholar
  37. 37.
    Bland JM, Altman DG (1996) Transforming data. BMJ 312:770CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Feng C, Wang H, Lu N et al (2014) Log-transformation and its implications for data analysis. Shanghai Arch Psychiatry 26:105–109.  https://doi.org/10.3969/j.issn.1002-0829.2014.02.009 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Feng C, Wang H, Lu N, Tu XM (2013) Log transformation: application and interpretation in biomedical research. Stat Med 32:230–239.  https://doi.org/10.1002/sim.5486 CrossRefPubMedGoogle Scholar
  40. 40.
    Atkins DC, Baldwin SA, Zheng C et al (2013) A tutorial on count regression and zero-altered count models for longitudinal substance use data. Psychol Addict Behav J Soc Psychol Addict Behav 27:166–177.  https://doi.org/10.1037/a0029508 CrossRefGoogle Scholar
  41. 41.
    Schürhoff F, Fond G, Berna F et al (2015) A National network of schizophrenia expert centres: an innovative tool to bridge the research-practice gap. Eur Psychiatry J Assoc Eur Psychiatr.  https://doi.org/10.1016/j.eurpsy.2015.05.004 CrossRefGoogle Scholar
  42. 42.
    Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276CrossRefPubMedGoogle Scholar
  43. 43.
    Min Y, Agresti A (2005) Random effect models for repeated measures of zero-inflated count data. Stat Model 5:1–19.  https://doi.org/10.1191/1471082X05st084oa CrossRefGoogle Scholar
  44. 44.
    Fonseka TM, Müller DJ, Kennedy SH (2016) Inflammatory cytokines and antipsychotic-induced weight gain: review and clinical implications. Mol Neuropsychiatry 2:1–14.  https://doi.org/10.1159/000441521 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Godin O, Leboyer M, Gaman A et al (2015) Metabolic syndrome, abdominal obesity and hyperuricemia in schizophrenia: results from the FACE-SZ cohort. Schizophr Res.  https://doi.org/10.1016/j.schres.2015.07.047 PubMedCrossRefGoogle Scholar
  46. 46.
    Kao Y-C, Ko C-Y, Wang S-C, Liu Y-P (2016) Protective effects of quetiapine on metabolic and inflammatory abnormalities in schizophrenic patients during exacerbated stage. Chin J Physiol 59:69–77.  https://doi.org/10.4077/CJP.2016.BAE370 PubMedCrossRefGoogle Scholar
  47. 47.
    Sárvári AK, Veréb Z, Uray IP et al (2014) Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro. Biochem Biophys Res Commun 450:1383–1389.  https://doi.org/10.1016/j.bbrc.2014.07.005 CrossRefPubMedGoogle Scholar
  48. 48.
    Meyer JM, McEvoy JP, Davis VG et al (2009) Inflammatory markers in schizophrenia: comparing antipsychotic effects in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Biol Psychiatry 66:1013–1022.  https://doi.org/10.1016/j.biopsych.2009.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Maneeton N, Maneeton B, Woottiluk P et al (2016) Quetiapine monotherapy in acute treatment of generalized anxiety disorder: a systematic review and meta-analysis of randomized controlled trials. Drug Des Dev Ther 10:259–276.  https://doi.org/10.2147/DDDT.S89485 CrossRefGoogle Scholar
  50. 50.
    Chassard C, Dapoigny M, Scott KP et al (2012) Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther 35:828–838.  https://doi.org/10.1111/j.1365-2036.2012.05007.x CrossRefPubMedGoogle Scholar
  51. 51.
    Zoppi G, Cinquetti M, Luciano A et al (1992) The intestinal ecosystem in chronic functional constipation. Acta Paediatr Oslo Nor 1992 87:836–841Google Scholar
  52. 52.
    Severance EG, Gressitt KL, Stallings CR et al (2013) Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res 148:130–137.  https://doi.org/10.1016/j.schres.2013.05.018 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bret P, Bret M-C, Queuille E (2009) Enquête de pratiques de prescription des antipsychotiques dans 13 centres hospitaliers du réseau PIC. L’Encéphale 35:129–138.  https://doi.org/10.1016/j.encep.2008.03.007 CrossRefPubMedGoogle Scholar
  54. 54.
    Stahl SM (1999) Antipsychotic polypharmacy, part 1: therapeutic option or dirty little secret?: (Brainstorms). J Clin Psychiatry 60:425–426.  https://doi.org/10.4088/JCP.v60n0701 CrossRefPubMedGoogle Scholar
  55. 55.
    Irwin MR, Olmstead R, Carroll JE (2016) Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry 80:40–52.  https://doi.org/10.1016/j.biopsych.2015.05.014 CrossRefPubMedGoogle Scholar
  56. 56.
    Bambakidis T, Dekker SE, Sillesen M et al (2016) Resuscitation with valproic acid alters inflammatory genes in a porcine model of combined traumatic brain injury and hemorrhagic shock. J Neurotrauma 33:1514–1521.  https://doi.org/10.1089/neu.2015.4163 CrossRefPubMedGoogle Scholar
  57. 57.
    Kabel AM, Omar MS, Elmaaboud MAA (2016) Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress. Int Immunopharmacol 39:335–342.  https://doi.org/10.1016/j.intimp.2016.08.008 CrossRefPubMedGoogle Scholar
  58. 58.
    Leu S-J, Yang Y-Y, Liu H-C et al (2016) Valproic acid and lithium meditate anti-inflammatory effects by differentially modulating dendritic cell differentiation and function. J Cell Physiol.  https://doi.org/10.1002/jcp.25604 PubMedCrossRefGoogle Scholar
  59. 59.
    Fond G, Boyer L, Gaman A et al (2015) Treatment with anti-toxoplasmic activity (TATA) for toxoplasma positive patients with bipolar disorders or schizophrenia: a cross-sectional study. J Psychiatr Res 63:58–64.  https://doi.org/10.1016/j.jpsychires.2015.02.011 CrossRefPubMedGoogle Scholar
  60. 60.
    Amirzargar MA, Yaghubi F, Hosseinipanah M et al (2017) Anti-inflammatory effects of valproic acid in a rat model of renal ischemia/reperfusion injury: alteration in cytokine profile. Inflammation 40:1310–1318.  https://doi.org/10.1007/s10753-017-0574-9 CrossRefPubMedGoogle Scholar
  61. 61.
    Hoşgörler F, Keleş D, Tanrıverdi-Akhisaroğlu S et al (2016) Anti-inflammatory and anti-apoptotic effect of valproic acid and doxycycline independent from MMP inhibition in early radiation damage. Balk Med J 33:488–495.  https://doi.org/10.5152/balkanmedj.2016.151304 CrossRefGoogle Scholar
  62. 62.
    Leu S-J, Yang Y-Y, Liu H-C et al (2017) Valproic acid and lithium meditate anti-inflammatory effects by differentially modulating dendritic cell differentiation and function. J Cell Physiol 232:1176–1186.  https://doi.org/10.1002/jcp.25604 CrossRefPubMedGoogle Scholar
  63. 63.
    Fond G, Macgregor A, Tamouza R et al (2013) Comparative analysis of anti-toxoplasmic activity of antipsychotic drugs and valproate. Eur Arch Psychiatry Clin Neurosci.  https://doi.org/10.1007/s00406-013-0413-4 CrossRefPubMedGoogle Scholar
  64. 64.
    Ogundeji AO, Pohl CH, Sebolai OM (2017) The repurposing of anti-psychotic drugs, quetiapine and olanzapine, as anti-cryptococcus drugs. Front Microbiol 8:815.  https://doi.org/10.3389/fmicb.2017.00815 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Bahramabadi R, Samadi M, Vakilian A et al (2017) Evaluation of the effects of anti-psychotic drugs on the expression of CD68 on the peripheral blood monocytes of Alzheimer patients with psychotic symptoms. Life Sci 179:73–79.  https://doi.org/10.1016/j.lfs.2017.04.024 CrossRefPubMedGoogle Scholar
  66. 66.
    Jaehne EJ, Corrigan F, Toben C et al (2015) The effect of the antipsychotic drug quetiapine and its metabolite norquetiapine on acute inflammation, memory and anhedonia. Pharmacol Biochem Behav 135:136–144.  https://doi.org/10.1016/j.pbb.2015.05.021 CrossRefPubMedGoogle Scholar
  67. 67.
    Haapakoski R, Mathieu J, Ebmeier KP et al (2015) Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215.  https://doi.org/10.1016/j.bbi.2015.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dao-Ung P, Skarratt KK, Fuller SJ, Stokes L (2015) Paroxetine suppresses recombinant human P2X7 responses. Purinergic Signal 11:481–490.  https://doi.org/10.1007/s11302-015-9467-2 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gaydos J, McNally A, Guo R et al (2016) Alcohol abuse and smoking alter inflammatory mediator production by pulmonary and systemic immune cells. Am J Physiol Lung Cell Mol Physiol 310:L507–L518.  https://doi.org/10.1152/ajplung.00242.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kim JH, Cho HT, Kim YJ (2014) The role of estrogen in adipose tissue metabolism: insights into glucose homeostasis regulation. Endocr J 61:1055–1067CrossRefPubMedGoogle Scholar
  71. 71.
    Li X, Zhang J, Zhu X et al (2015) Progesterone reduces inflammation and apoptosis in neonatal rats with hypoxic ischemic brain damage through the PI3K/Akt pathway. Int J Clin Exp Med 8:8197–8203PubMedPubMedCentralGoogle Scholar
  72. 72.
    Joseph J, Depp C, Martin AS et al (2015) Associations of high sensitivity C-reactive protein levels in schizophrenia and comparison groups. Schizophr Res 168:456–460.  https://doi.org/10.1016/j.schres.2015.08.019 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Altamura AC, Bassetti R, Cattaneo E, Vismara S (2005) Some biological correlates of drug resistance in schizophrenia: a multidimensional approach. World J Biol Psychiatry 6(Suppl 2):23–30.  https://doi.org/10.1080/15622970510030027 CrossRefPubMedGoogle Scholar
  74. 74.
    Stubbs B, Gardner-Sood P, Smith S et al (2015) Sedentary behaviour is associated with elevated C-reactive protein levels in people with psychosis. Schizophr Res 168:461–464.  https://doi.org/10.1016/j.schres.2015.07.003 CrossRefPubMedGoogle Scholar
  75. 75.
    Berk M, Williams LJ, Jacka FN et al (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11:200.  https://doi.org/10.1186/1741-7015-11-200 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • G. Fond
    • 1
    • 2
    • 3
    • 15
    • 18
  • N. Resseguier
    • 1
    • 4
    • 15
  • F. Schürhoff
    • 1
    • 2
    • 3
    • 15
  • O. Godin
    • 1
    • 2
    • 3
    • 15
  • M. Andrianarisoa
    • 1
    • 2
    • 3
    • 15
  • L. Brunel
    • 1
    • 2
    • 3
    • 15
  • E. Bulzacka
    • 1
    • 2
    • 3
    • 15
  • B. Aouizerate
    • 1
    • 5
    • 6
    • 15
    • 16
  • F. Berna
    • 1
    • 7
    • 15
  • D. Capdevielle
    • 1
    • 8
    • 15
  • I. Chereau
    • 1
    • 9
    • 15
  • T. D’Amato
    • 1
    • 10
    • 15
  • C. Dubertret
    • 1
    • 11
    • 15
  • J. Dubreucq
    • 1
    • 12
    • 15
  • C. Faget
    • 1
    • 13
    • 15
  • F. Gabayet
    • 1
    • 12
    • 15
  • C. Lançon
    • 1
    • 13
    • 15
  • P. M. Llorca
    • 1
    • 9
    • 15
  • J. Mallet
    • 1
    • 11
    • 15
  • D. Misdrahi
    • 1
    • 5
    • 6
    • 15
    • 17
  • C. Passerieux
    • 1
    • 14
    • 15
  • R. Rey
    • 1
    • 10
    • 15
  • A. Schandrin
    • 1
    • 8
    • 15
  • M. Urbach
    • 1
    • 14
    • 15
  • P. Vidailhet
    • 7
    • 15
  • L. Boyer
    • 1
    • 4
    • 15
  • M. Leboyer
    • 1
    • 2
    • 3
    • 15
  • the FACE-SZ (FondaMental Academic Centers of Expertise for Schizophrenia) group
  1. 1.Fondation FondaMentalCréteilFrance
  2. 2.INSERM U955, équipe de psychiatrie translationnelleCréteilFrance
  3. 3.Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H MondorCréteilFrance
  4. 4.Pôle psychiatrie universitaire, CHU Sainte-MargueriteMarseille Cedex 09France
  5. 5.Centre Hospitalier Charles PerrensBordeauxFrance
  6. 6.Université de BordeauxBordeauxFrance
  7. 7.Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de StrasbourgStrasbourgFrance
  8. 8.Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061MontpellierFrance
  9. 9.CMP B, CHU, EA 7280 Faculté de MédecineUniversité d’AuvergneClermont-Ferrand Cedex 1France
  10. 10.INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le VinatierBron CedexFrance
  11. 11.AP-HP, Department of Psychiatry, Louis Mourier Hospital, Colombes, Inserm U894, Université Paris Diderot, Sorbonne Paris Cité, Faculté de médecineColombesFrance
  12. 12.Centre Référent de Réhabilitation Psychosociale, CH Alpes IsèreGrenobleFrance
  13. 13.Assistance Publique des Hôpitaux de Marseille (AP-HM), pôle universitaire de psychiatrieMarseilleFrance
  14. 14.Service de psychiatrie d’adulte, Centre Hospitalier de Versailles, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en YvelinesVersaillesFrance
  15. 15.Bordeaux Sleep Clinique, Pellegrin University Hospital, Bordeaux University, USR CNRS 3413 SANPSY, Research UnitBordeauxFrance
  16. 16.Inserm, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862BordeauxFrance
  17. 17.CNRS, UMR 5287-INCIABordeauxFrance
  18. 18.Pole de Psychiatrie, Hôpital A. ChenevierCréteilFrance

Personalised recommendations