Advertisement

Olfactory deficits in individuals at risk for psychosis and patients with schizophrenia: relationship with socio-cognitive functions and symptom severity

  • Tsutomu TakahashiEmail author
  • Mihoko Nakamura
  • Daiki Sasabayashi
  • Yuko Komori
  • Yuko Higuchi
  • Yumiko Nishikawa
  • Shimako Nishiyama
  • Hiroko Itoh
  • Yuri Masaoka
  • Michio Suzuki
Original Paper

Abstract

Odor identification deficits are well documented in patients with schizophrenia, but it remains unclear whether individuals at clinical high-risk for psychosis exhibit similar changes and whether their olfactory function is related to social/cognitive functions and symptomatology. In this study, we investigated odor detection sensitivity and identification ability in 32 individuals with at-risk mental state (ARMS), 59 schizophrenia patients, and 169 healthy controls using a T&T olfactometer. The ARMS and schizophrenia subjects were administered the Brief Assessment of Cognition in Schizophrenia (BACS), the Schizophrenia Cognition Rating Scale (SCoRS), and the Social and Occupational Functioning Assessment Scale (SOFAS) to assess their cognitive and social functions, and the Positive and Negative Syndrome Scale (PANSS) for clinical symptoms. Both the ARMS and schizophrenia subjects had lower odor identification ability when compared with healthy controls, while no significant difference was found in the odor detection sensitivity. The lower odor identification ability in the ARMS group correlated with the severity of negative symptoms and weakly correlated with lower performance on the BACS verbal fluency test. The olfactory measures of schizophrenia patients did not correlate with illness duration, medication, symptom severity, and social and cognitive functions. For the ARMS and schizophrenia groups, the olfactory measures did not correlate with the SOFAS and SCoRS scores. These findings suggest that high-risk subjects for psychosis already show odor identification deficits similar to those observed in schizophrenia patients, which probably reflect a biological trait related to vulnerability to psychosis.

Keywords

Olfaction High-risk Psychosis Schizophrenia Negative symptoms Cognition 

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP26461739 to Dr. Takahashi and JP24390281 to Prof. Suzuki and by the Health and Labour Sciences Research Grants for Comprehensive Research on Persons with Disabilities from the Japan Agency for Medical Research and Development (AMED) Grant Number 16dk0307029h0003 to Prof. Suzuki. The funding agencies had no role in the design and conduct of the study, collection, management, analysis and interpretation of the data, or preparation, review and approval of the manuscript.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest for any of the authors including any financial, personal or other relationships with other people or organizations within 3 years of beginning the submitted work that could inappropriately influence, or be perceived to influence, our work.

References

  1. 1.
    Soudry Y, Lemogne C, Malinvaud D, Consoli SM, Bonfils P (2011) Olfactory system and emotion: common substrates. Eur Ann Otorhinolaryngol Head Neck Dis 128:18–23CrossRefPubMedGoogle Scholar
  2. 2.
    Brewer WJ, Pantelis C, Anderson V, Velakoulis D, Singh B, Copolov DL, McGorry PD (2001) Stability of olfactory identification deficits in neuroleptic-naive patients with first-episode psychosis. Am J Psychiatry 158:107–115CrossRefPubMedGoogle Scholar
  3. 3.
    Ishizuka K, Tajinda K, Colantuoni C, Morita M, Winicki J, Le C, Lin S, Schretlen D, Sawa A, Cascella NG (2010) Negative symptoms of schizophrenia correlate with impairment on the University of Pennsylvania smell identification test. Neurosci Res 66:106–110CrossRefPubMedGoogle Scholar
  4. 4.
    Kamath V, Turetsky BI, Calkins ME, Kohler CG, Conroy CG, Borgmann-Winter K, Gatto DE, Gur RE, Moberg PJ (2014) Olfactory processing in schizophrenia, non-ill first-degree family members, and young people at-risk for psychosis. World J Biol Psychiatry 15:209–218CrossRefPubMedGoogle Scholar
  5. 5.
    Atanasova B, Graux J, El Hage W, Hommet C, Camus V, Belzung C (2008) Olfaction: a potential cognitive marker of psychiatric disorders. Neurosci Biobehav Rev 32:1315–1325CrossRefPubMedGoogle Scholar
  6. 6.
    Moberg PJ, Agrin R, Gur RE, Gur RC, Turetsky BI, Doty RL (1999) Olfactory dysfunction in schizophrenia: a qualitative and quantitative review. Neuropsychopharmacology 21:325–340CrossRefPubMedGoogle Scholar
  7. 7.
    Rupp CI (2010) Olfactory function and schizophrenia: an update. Curr Opin Psychiatry 23:97–102CrossRefPubMedGoogle Scholar
  8. 8.
    Moberg PJ, Kamath V, Marchetto DM, Calkins ME, Doty RL, Hahn CG, Borgmann-Winter KE, Kohler CG, Gur RE, Turetsky BI (2014) Meta-analysis of olfactory function in schizophrenia, first-degree family members, and youths at-risk for psychosis. Schizophr Bull 40:50–59CrossRefPubMedGoogle Scholar
  9. 9.
    Corcoran C, Whitaker A, Coleman E, Fried J, Feldman J, Goudsmit N, Malaspina D (2005) Olfactory deficits, cognition and negative symptoms in early onset psychosis. Schizophr Res 80:283–293CrossRefPubMedGoogle Scholar
  10. 10.
    Malaspina D, Keller A, Antonius D, Messinger JW, Goetz DM, Harkavy-Friedman J, Goetz RR, Harlap S (2012) Olfaction and cognition in schizophrenia: sex matters. J Neuropsychiatry Clin Neurosci 24:165–175CrossRefPubMedGoogle Scholar
  11. 11.
    Seckinger RA, Goudsmit N, Coleman E, Harkavy-Friedman J, Yale S, Rosenfield PJ, Malaspina D (2004) Olfactory identification and WAIS-R performance in deficit and nondeficit schizophrenia. Schizophr Res 69:55–65CrossRefPubMedGoogle Scholar
  12. 12.
    Good KP, Tibbo P, Milliken H, Whitehorn D, Alexiadis M, Robertson N, Kopala LC (2010) An investigation of a possible relationship between olfactory identification deficits at first episode and four-year outcomes in patients with psychosis. Schizophr Res 124:60–65CrossRefPubMedGoogle Scholar
  13. 13.
    Malaspina D, Coleman E (2003) Olfaction and social drive in schizophrenia. Arch Gen Psychiatry 60:578–584CrossRefPubMedGoogle Scholar
  14. 14.
    Kopala LC, Clark C, Hurwitz T (1993) Olfactory deficits in neuroleptic naive patients with schizophrenia. Schizophr Res 8:245–250CrossRefPubMedGoogle Scholar
  15. 15.
    Szeszko PR, Bates J, Robinson D, Kane J, Bilder RM (2004) Investigation of unirhinal olfactory identification in antipsychotic-free patients experiencing a first-episode schizophrenia. Schizophr Res 67:219–225CrossRefPubMedGoogle Scholar
  16. 16.
    Kopala LC, Good KP, Morrison K, Bassett AS, Alda M, Honer WG (2001) Impaired olfactory identification in relatives of patients with familial schizophrenia. Am J Psychiatry 158:1286–1290CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Roalf DR, Turetsky BI, Owzar K, Balderston CC, Johnson SC, Brensinger CM, Gur RE, Siegel SJ, Moberg PJ (2006) Unirhinal olfactory function in schizophrenia patients and first-degree relatives. J Neuropsychiatry Clin Neurosci 18:389–396CrossRefPubMedGoogle Scholar
  18. 18.
    Turetsky BI, Kohler CG, Gur RE, Moberg PJ (2008) Olfactory physiological impairment in first-degree relatives of schizophrenia patients. Schizophr Res 102:220–229CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yung AR, Phillips LJ, McGorry PD (2004) Treating Schizophrenia in the Prodromal Phase. Taylor & Francis, LondonCrossRefGoogle Scholar
  20. 20.
    Woodberry KA, Seidman LJ, Giuliano AJ, Verdi MB, Cook WL, McFarlane WR (2010) Neuropsychological profiles in individuals at clinical high risk for psychosis: relationship to psychosis and intelligence. Schizophr Res 123:188–198CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Brewer WJ, Wood SJ, McGorry PD, Francey SM, Phillips LJ, Yung AR, Anderson V, Copolov DL, Singh B, Velakoulis D, Pantelis C (2003) Impairment of olfactory identification ability in individuals at ultra-high risk for psychosis who later develop schizophrenia. Am J Psychiatry 160:1790–1794CrossRefPubMedGoogle Scholar
  22. 22.
    Gill KE, Evans E, Kayser J, Ben-David S, Messinger J, Bruder G, Malaspina D, Corcoran CM (2014) Smell identification in individuals at clinical high risk for schizophrenia. Psychiatry Res 220:201–204CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kayser J, Tenke CE, Kroppmann CJ, Alschuler DM, Ben-David S, Fekri S, Bruder GE, Corcoran CM (2013) Olfaction in the psychosis prodrome: electrophysiological and behavioral measures of odor detection. Int J Psychophysiol 90:190–206CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kotlicka-Antczak M, Pawełczyk A, Karbownik MS, Pawełczyk T, Strzelecki D, Żurner N, Urban-Kowalczyk M (2017) Deficits in the identification of pleasant odors predict the transition of an at-risk mental state to psychosis. Schizophr Res 181:49–54CrossRefPubMedGoogle Scholar
  25. 25.
    Lin A, Brewer WJ, Yung AR, Nelson B, Pantelis C, Wood SJ (2015) Olfactory identification deficits at identification as ultra-high risk for psychosis are associated with poor functional outcome. Schizophr Res 161:156–162CrossRefPubMedGoogle Scholar
  26. 26.
    Kamath V, Moberg PJ, Calkins ME, Borgmann-Winter K, Conroy CG, Gur RE, Kohler CG, Turetsky BI (2012) An odor-specific threshold deficit implicates abnormal cAMP signaling in youths at clinical risk for psychosis. Schizophr Res 138:280–284CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Turetsky BI, Kamath V, Calkins ME, Brewer WJ, Wood SJ, Pantelis C, Seidman LJ, Malaspina D, Good KP, Kopala LC, Moberg PJ (2012) Olfaction and schizophrenia clinical risk status: just the facts. Schizophr Res 139:260–261CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mizuno M, Suzuki M, Matsumoto K, Murakami M, Takeshi K, Miyakoshi T, Ito F, Yamazawa R, Kobayashi H, Nemoto T, Kurachi M (2009) Clinical practice and research activities for early psychiatric intervention at Japanese leading centres. Early Interv Psychiatry 3:5–9CrossRefPubMedGoogle Scholar
  29. 29.
    American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  30. 30.
    First MB, Gibbon M, Spitzer RL, Williams JBW (1997) Structured clinical interview for DSM-IV Axis I disorders. American Psychiatric Press, Washington DCGoogle Scholar
  31. 31.
    Takahashi T, Itoh H, Nishikawa Y, Higuchi Y, Nakamura M, Sasabayashi D, Nishiyama S, Mizukami Y, Masaoka Y, Suzuki M (2015) Possible relation between olfaction and anxiety in healthy subjects. Psychiatry Clin Neurosci 69:431–438CrossRefPubMedGoogle Scholar
  32. 32.
    Okada N, Kasai K, Takahashi T, Suzuki M, Hashimoto R, Kameyama T, Hiramatsu K, Saito O, Niwa S (2014) Rating scale of handedness for biological psychiatry research among Japanese people. Jpn J Biol Psychiatry 25:118–119Google Scholar
  33. 33.
    Okada N, Kasai K, Takahashi T, Suzuki M, Hashimoto R, Kawakami N (2014) Brief rating scale of socioeconomic status for biological psychiatry research among Japanese people: a scaling based on an educational history. Jpn J Biol Psychiatry 25:115–117Google Scholar
  34. 34.
    Matsuoka K, Uno M, Kasai K, Koyama K, Kim Y (2006) Estimation of premorbid IQ in individuals with Alzheimer’s disease using Japanese ideographic script (Kanji) compound words: japanese version of National Adult Reading Test. Psychiatry Clin Neurosci 60:332–339CrossRefPubMedGoogle Scholar
  35. 35.
    Masaoka Y, Koiwa N, Homma I (2005) Inspiratory phase-locked alpha oscillation in human olfaction: source generators estimated by a dipole tracing method. J Physiol 566:979–997CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Doty RL, Shaman P, Dann MS (1984) Development of the university of pennsylvania smell identification test: a standardized microencapsulated test of olfactory function. Physiol Behav 32:489–502CrossRefPubMedGoogle Scholar
  37. 37.
    Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276CrossRefPubMedGoogle Scholar
  38. 38.
    Kaneda Y, Sumiyoshi T, Keefe R, Ishimoto Y, Numata S, Ohmori T (2007) Brief assessment of cognition in schizophrenia: validation of the Japanese version. Psychiatry Clin Neurosci 61:602–609CrossRefPubMedGoogle Scholar
  39. 39.
    Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L (2004) The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res 68:283–297CrossRefPubMedGoogle Scholar
  40. 40.
    Kaneda Y, Ohmori T, Okahisa Y, Sumiyoshi T, Pu S, Ueoka Y, Takaki M, Nakagome K, Sora I (2013) Measurement and treatment research to improve cognition in schizophrenia consensus cognitive battery: validation of the Japanese version. Psychiatry Clin Neurosci 67:182–188CrossRefPubMedGoogle Scholar
  41. 41.
    Keefe RS, Poe M, Walker TM, Kang JW, Harvey PD (2006) The Schizophrenia Cognition Rating Scale: an interview-based assessment and its relationship to cognition, real-world functioning, and functional capacity. Am J Psychiatry 163:426–432CrossRefPubMedGoogle Scholar
  42. 42.
    Goldman HH, Skodol AE, Lave TR (1992) Revising axis V for DSM-IV: a review of measures of social functioning. Am J Psychiatry 149:1148–1156CrossRefPubMedGoogle Scholar
  43. 43.
    Higuchi Y, Sumiyoshi T, Seo T, Suga M, Takahashi T, Nishiyama S, Komori Y, Kasai K, Suzuki M (2017) Associations between daily living skills, cognition, and real-world functioning across stages of schizophrenia; A study with the Schizophrenia Cognition Rating Scale Japanese version. Schizophr Res Cogn 7:13–18CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Eguchi S, Koike S, Suga M, Takizawa R, Kasai K (2015) Psychological symptom and social functioning subscales of the modified Global Assessment of Functioning scale: reliability and validity of the Japanese version. Psychiatry Clin Neurosci 69:126–127CrossRefPubMedGoogle Scholar
  45. 45.
    Toru M (2008) Psychotropic manual, 3rd edn. Igaku-Shoin, TokyoGoogle Scholar
  46. 46.
    Fornito A, Yücel M, Patti J, Wood SJ, Pantelis C (2009) Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr Res 108:104–113CrossRefPubMedGoogle Scholar
  47. 47.
    Jackowski AP, Araújo Filho GM, Almeida AG, Araújo CM, Reis M, Nery F, Batista IR, Silva I, Lacerda AL (2012) The involvement of the orbitofrontal cortex in psychiatric disorders: an update of neuroimaging findings. Rev Bras Psiquiatr 34:207–212CrossRefPubMedGoogle Scholar
  48. 48.
    English JA, Fan Y, Föcking M, Lopez LM, Hryniewiecka M, Wynne K, Dicker P, Matigian N, Cagney G, Mackay-Sim A, Cotter DR (2015) Reduced protein synthesis in schizophrenia patient-derived olfactory cells. Transl Psychiatry 5:e663CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Horiuchi Y, Kondo MA, Okada K, Takayanagi Y, Tanaka T, Ho T, Varvaris M, Tajinda K, Hiyama H, Ni K, Colantuoni C, Schretlen D, Cascella NG, Pevsner J, Ishizuka K, Sawa A (2016) Molecular signatures associated with cognitive deficits in schizophrenia: a study of biopsied olfactory neural epithelium. Transl Psychiatry 6:e915CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nguyen AD, Pelavin PE, Shenton ME, Chilakamarri P, McCarley RW, Nestor PG, Levitt JJ (2011) Olfactory sulcal depth and olfactory bulb volume in patients with schizophrenia: an MRI study. Brain Imaging Behav 5:252–261CrossRefPubMedGoogle Scholar
  51. 51.
    Turetsky BI, Moberg PJ, Yousem DM, Doty RL, Arnold SE, Gur RE (2000) Reduced olfactory bulb volume in patients with schizophrenia. Am J Psychiatry 157:828–830CrossRefPubMedGoogle Scholar
  52. 52.
    Turetsky BI, Moberg PJ, Roalf DR, Arnold SE, Gur RE (2003) Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia. Arch Gen Psychiatry 60:1193–1200CrossRefPubMedGoogle Scholar
  53. 53.
    Rupp CI, Fleischhacker WW, Kemmler G, Kremser C, Bilder RM, Mechtcheriakov S, Szeszko PR, Walch T, Scholtz AW, Klimbacher M, Maier C, Albrecht G, Lechner-Schoner T, Felber S, Hinterhuber H (2005) Olfactory functions and volumetric measures of orbitofrontal and limbic regions in schizophrenia. Schizophr Res 74:149–161CrossRefPubMedGoogle Scholar
  54. 54.
    Rupp CI, Fleischhacker WW, Kemmler G, Oberbauer H, Scholtz AW, Wanko C, Hinterhuber H (2005) Various bilateral olfactory deficits in male patients with schizophrenia. Schizophr Bull 31:155–165CrossRefPubMedGoogle Scholar
  55. 55.
    Kohler CG, Moberg PJ, Gur RE, O’Connor MJ, Sperling MR, Doty R (2001) Olfactory dysfunction in schizophrenia and temporal lobe epilepsy. Neuropsychiatry Neuropsychol Behav Neurol 14:83–88PubMedGoogle Scholar
  56. 56.
    Oberg PJ, Arnold SE, Doty RL, Gur RE, Balderston CC, Roalf DR, Gur RC, Kohler CG, Kanes SJ, Siegel SJ, Turetsky BI (2006) Olfactory functioning in schizophrenia: relationship to clinical, neuropsychological, and volumetric MRI measures. J Clin Exp Neuropsychol 28:1444–1461CrossRefGoogle Scholar
  57. 57.
    Sirota P, Davidson B, Mosheva T, Benhatov R, Zohar J, Gross-Isseroff R (1999) Increased olfactory sensitivity in first episode psychosis and the effect of neuroleptic treatment on olfactory sensitivity in schizophrenia. Psychiatry Res 86:143–153CrossRefPubMedGoogle Scholar
  58. 58.
    Kiparizoska S, Ikuta T (2017) Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study. Int J Neuropsychopharmacol, in pressGoogle Scholar
  59. 59.
    Doty RL, Shaman P, Applebaum SL, Giberson R, Siksorski L, Rosenberg L (1984) Smell identification ability: changes with age. Science 226:1441–1443CrossRefPubMedGoogle Scholar
  60. 60.
    Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72:341–372CrossRefPubMedGoogle Scholar
  61. 61.
    Cressman VL, Schobel SA, Steinfeld S, Ben-David S, Thompson JL, Small SA, Moore H, Corcoran CM (2015) Anhedonia in the psychosis risk syndrome: associations with social impairment and basal orbitofrontal cortical activity. NPJ Schizophr 1:15020CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lavoie S, Bartholomeuz CF, Nelson B, Lin A, McGorry PD, Velakoulis D, Whittle SL, Yung AR, Pantelis C, Wood SJ (2014) Sulcogyral pattern and sulcal count of the orbitofrontal cortex in individuals at ultra high risk for psychosis. Schizophr Res 154:93–99CrossRefPubMedGoogle Scholar
  63. 63.
    Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, McGuire PK (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288CrossRefPubMedGoogle Scholar
  64. 64.
    Rolls ET, Kringelbach ML, de Araujo IE (2003) Different representations of pleasant and unpleasant odours in the human brain. Eur J Neurosci 18:695–703CrossRefPubMedGoogle Scholar
  65. 65.
    Good KP, Whitehorn D, Rui Q, Milliken H, Kopala LC (2006) Olfactory identification deficits in first-episode psychosis may predict patients at risk for persistent negative and disorganized or cognitive symptoms. Am J Psychiatry 163:932–933CrossRefPubMedGoogle Scholar
  66. 66.
    Goudsmit N, Coleman E, Seckinger RA, Wolitzky R, Stanford AD, Corcoran C, Goetz RR, Malaspina D (2003) A brief smell identification test discriminates between deficit and non-deficit schizophrenia. Psychiatry Res 120:155–164CrossRefPubMedGoogle Scholar
  67. 67.
    Fusar-Poli P, Deste G, Smieskova R, Barlati S, Yung AR, Howes O, Stieglitz RD, Vita A, McGuire P, Borgwardt S (2012) Cognitive functioning in prodromal psychosis: a meta-analysis. Arch Gen Psychiatry 69:562–571PubMedGoogle Scholar
  68. 68.
    Hauser M, Zhang JP, Sheridan EM, Burdick KE, Mogil R, Kane JM, Auther A, Carrión RE, Cornblatt BA, Correll CU (2017) Neuropsychological test performance to enhance identification of subjects at clinical high risk for psychosis and to be most promising for predictive algorithms for conversion to psychosis: a meta-analysis. J Clin Psychiatry 78:e28–e40CrossRefPubMedGoogle Scholar
  69. 69.
    Sawada K, Kanehara A, Sakakibara E, Eguchi S, Tada M, Satomura Y, Suga M, Koike S, Kasai K (2017) Identifying neurocognitive markers for outcome prediction of global functioning in individuals with first-episode and ultra-high-risk for psychosis. Psychiatry Clin Neurosci 71:318–327CrossRefPubMedGoogle Scholar
  70. 70.
    Seidman LJ, Talbot NL, Kalinowski AG, McCarley RW, Faraone SV, Kremen WS, Pepple JR, Tsuang MT (1992) Neuropsychological probes of fronto-limbic system dysfunction in schizophrenia. Olfactory identification and Wisconsin Card Sorting performance. Schizophr Res 6:55–65CrossRefGoogle Scholar
  71. 71.
    Seidman LJ, Goldstein JM, Goodman JM, Koren D, Turner WM, Faraone SV, Tsuang MT (1997) Sex differences in olfactory identification and Wisconsin Card Sorting performance in schizophrenia: relationship to attention and verbal ability. Biol Psychiatry 42:104–115CrossRefPubMedGoogle Scholar
  72. 72.
    Doty RL (1997) Studies of human olfaction from the University of Pennsylvania Smell and Taste Center. Chem Senses 22:565–586CrossRefPubMedGoogle Scholar
  73. 73.
    Purdon SE, Klein S, Flor-Henry P (2001) Menstrual effects on asymmetrical olfactory acuity. J Int Neuropsychol Soc 7:703–709CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Tsutomu Takahashi
    • 1
    Email author return OK on get
  • Mihoko Nakamura
    • 1
  • Daiki Sasabayashi
    • 1
  • Yuko Komori
    • 1
  • Yuko Higuchi
    • 1
  • Yumiko Nishikawa
    • 1
  • Shimako Nishiyama
    • 1
  • Hiroko Itoh
    • 1
  • Yuri Masaoka
    • 2
  • Michio Suzuki
    • 1
  1. 1.Department of Neuropsychiatry University of Toyama Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
  2. 2.Department of PhysiologyShowa University School of MedicineTokyoJapan

Personalised recommendations