Scary symptoms? Functional magnetic resonance imaging evidence for symptom interpretation bias in pathological health anxiety

  • Zhimin Yan
  • Michael Witthöft
  • Josef Bailer
  • Carsten Diener
  • Daniela Mier
Original Paper


Patients with pathological health anxiety (PHA) tend to automatically interpret bodily sensations as sign of a severe illness. To elucidate the neural correlates of this cognitive bias, we applied an functional magnetic resonance imaging adaption of a body-symptom implicit association test with symptom words in patients with PHA (n = 32) in comparison to patients with depression (n = 29) and healthy participants (n = 35). On the behavioral level, patients with PHA did not significantly differ from the control groups. However, on the neural-level patients with PHA in comparison to the control groups showed hyperactivation independent of condition in bilateral amygdala, right parietal lobe, and left nucleus accumbens. Moreover, patients with PHA, again in comparison to the control groups, showed hyperactivation in bilateral posterior parietal cortex and left dorsolateral prefrontal cortex during incongruent (i.e., harmless) versus congruent (i.e., dangerous) categorizations of body symptoms. Thus, body-symptom cues seem to trigger hyperactivity in salience and emotion processing brain regions in PHA. In addition, hyperactivity in brain regions involved in cognitive control and conflict resolution during incongruent categorization emphasizes enhanced neural effort to cope with negative implicit associations to body-symptom-related information in PHA. These results suggest increased neural responding in key structures for the processing of both emotional and cognitive aspects of body-symptom information in PHA, reflecting potential neural correlates of a negative somatic symptom interpretation bias.


Pathological health anxiety Implicit association test Functional magnetic resonance imaging Cognitive control Emotional response 



We thank Iris Wollgarten, Tobias Kerstner, and Julia Ofer for invaluable help with study organization and diagnostics. We thank Vera Zamoscik and Heike Schmidt for their excellent help in data collection. We are grateful to Fred Rist for important suggestions on study design and implementation. This study was supported by the Deutsche Forschungsgemeinschaft (DFG BA1597/5-1). Zhimin Yan is supported by the Chinese Scholarship Council (CSC).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

406_2017_832_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 48 kb)


  1. 1.
    American Psychiatric Association (2000) Diagnostic and statistical manual, 4th edn, text revision (DSM-IV-TR). American Psychiatric Association, WashingtonGoogle Scholar
  2. 2.
    Creed F, Barsky A (2004) A systematic review of the epidemiology of somatisation disorder and hypochondriasis. J Psychosom Res 56(4):391–408CrossRefPubMedGoogle Scholar
  3. 3.
    Fink P, Ørnbøl E, Christensen KS (2010) The outcome of health anxiety in primary care. A two-year follow-up study on health care costs and self-rated health. PLoS One 5(3):e9873CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gropalis M, Bleichhardt G, Witthöft M, Hiller W (2012) Hypochondriasis, somatoform disorders, and anxiety disorders: sociodemographic variables, general psychopathology, and naturalistic treatment effects. J Nerv Ment Dis 200(5):406–412CrossRefPubMedGoogle Scholar
  5. 5.
    Olatunji BO, Deacon BJ, Abramowitz JS (2009) Is hypochondriasis an anxiety disorder? Br J Psychiatry 194(6):481–482CrossRefPubMedGoogle Scholar
  6. 6.
    Fink P, Ørnbøl E, Toft T, Sparle KC, Frostholm L, Olesen F (2004) A new, empirically established hypochondriasis diagnosis. Am J Psychiatry 161(9):1680–1691CrossRefPubMedGoogle Scholar
  7. 7.
    Hirsch CR, Clark DM, Mathews A (2006) Imagery and interpretations in social phobia: support for the combined cognitive biases hypothesis. Behav Ther 37(3):223–236CrossRefPubMedGoogle Scholar
  8. 8.
    Beck AT, Freeman A, Davis DD (2015) Cognitive therapy of personality disorders. Guilford Publications, New YorkGoogle Scholar
  9. 9.
    Witthöft M, Kerstner T, Ofer J, Mier D, Rist F, Diener C, Bailer J (2016) Cognitive biases in pathological health anxiety the contribution of attention, memory, and evaluation processes. Clin Psychol Sci 4(3):464–479CrossRefGoogle Scholar
  10. 10.
    Bleichhardt G, Hiller W (2007) Hypochondriasis and health anxiety in the German population. Br J Health Psychol 12(4):511–523CrossRefPubMedGoogle Scholar
  11. 11.
    Noyes R Jr, Stuart SP, Langbehn DR, Happel RL, Longley SL, Muller BA, Yagla SJ (2003) Test of an interpersonal model of hypochondriasis. Psychosom Med 65(2):292–300CrossRefPubMedGoogle Scholar
  12. 12.
    Greenwald AG, Banaji MR, Rudman LA, Farnham SD, Nosek BA, Mellott DS (2002) A unified theory of implicit attitudes, stereotypes, self-esteem, and self-concept. Psychol Rev 109(1):3–25CrossRefPubMedGoogle Scholar
  13. 13.
    Greenwald AG, McGhee DE, Schwartz JL (1998) Measuring individual differences in implicit cognition: the implicit association test. J Pers Soc Psychol 74(6):1464–1480CrossRefPubMedGoogle Scholar
  14. 14.
    Teachman BA, Stefanucci JK, Clerkin EM, Cody MW, Proffitt DR (2008) A new mode of fear expression: perceptual bias in height fear. Emotion 8(2):296–301CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Weck F, Bleichhardt G, Witthöft M, Hiller W (2011) Explicit and implicit anxiety: differences between patients with hypochondriasis, patients with anxiety disorders, and healthy controls. Cogn Ther Res 35(4):317–325CrossRefGoogle Scholar
  16. 16.
    Riebel K, Egloff B, Witthöft M (2013) The implicit health-related self-concept in somatoform disorders. J Behav Ther Exp Psychiatry 44(3):335–342CrossRefPubMedGoogle Scholar
  17. 17.
    Beer JS, Stallen M, Lombardo MV, Gonsalkorale K, Cunningham WA, Sherman JW (2008) The quadruple process model approach to examining the neural underpinnings of prejudice. NeuroImage 43(4):775–783CrossRefPubMedGoogle Scholar
  18. 18.
    Barrett LF, Tugade MM, Engle RW (2004) Individual differences in working memory capacity and dual-process theories of the mind. Psychol Bull 130(4):553–573CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Beevers CG (2005) Cognitive vulnerability to depression: a dual process model. Clin Psychol Rev 25(7):975–1002CrossRefPubMedGoogle Scholar
  20. 20.
    Conrey FR, Sherman JW, Gawronski B, Hugenberg K, Groom CJ (2005) Separating multiple processes in implicit social cognition: the quad model of implicit task performance. J Pers Soc Psychol 89(4):469–487CrossRefPubMedGoogle Scholar
  21. 21.
    Sherman JW, Gawronski B, Gonsalkorale K, Hugenberg K, Allen TJ, Groom CJ (2008) The self-regulation of automatic associations and behavioral impulses. Psychol Rev 115(2):314–335CrossRefPubMedGoogle Scholar
  22. 22.
    Phelps EA, O’Connor KJ, Cunningham WA, Funayama ES, Gatenby JC, Gore JC, Banaji MR (2000) Performance on indirect measures of race evaluation predicts amygdala activation. J Cogn Neurosci 12(5):729–738CrossRefPubMedGoogle Scholar
  23. 23.
    Luo Q, Nakic M, Wheatley T, Richell R, Martin A, Blair RJR (2006) The neural basis of implicit moral attitude—an IAT study using event-related fMRI. NeuroImage 30(4):1449–1457CrossRefPubMedGoogle Scholar
  24. 24.
    Chee MW, Sriram N, Soon CS, Lee KM (2000) Dorsolateral prefrontal cortex and the implicit association of concepts and attributes. NeuroReport 11(1):135–140CrossRefPubMedGoogle Scholar
  25. 25.
    Knutson KM, Mah L, Manly CF, Grafman J (2007) Neural correlates of automatic beliefs about gender and race. Hum Brain Mapp 28(10):915–930CrossRefPubMedGoogle Scholar
  26. 26.
    Santos A, Mier D, Kirsch P, Meyer-Lindenberg A (2011) Evidence for a general face salience signal in human amygdala. NeuroImage 54(4):3111–3116CrossRefPubMedGoogle Scholar
  27. 27.
    Hsu M, Bhatt M, Adolphs R, Tranel D, Camerer CF (2005) Neural systems responding to degrees of uncertainty in human decision-making. Science 310(5754):1680–1683CrossRefPubMedGoogle Scholar
  28. 28.
    Kim H, Somerville LH, Johnstone T, Polis S, Alexander AL, Shin LM, Whalen PJ (2004) Contextual modulation of amygdala responsivity to surprised faces. J Cogn Neurosci 16(10):1730–1745CrossRefPubMedGoogle Scholar
  29. 29.
    Platek SM, Krill AL (2009) Self-face resemblance attenuates other-race face effect in the amygdala. Brain Res 1284:156–160CrossRefPubMedGoogle Scholar
  30. 30.
    Trawalter S, Richeson JA, Shelton JN (2009) Predicting behavior during interracial interactions: a stress and coping approach. Personal Soc Psychol Rev 13(4):243–268CrossRefGoogle Scholar
  31. 31.
    Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48(2):175–187CrossRefPubMedGoogle Scholar
  32. 32.
    Poldrack RA, Wagner AD, Stanley D, Phelps E, Banaji M (2008) The neural basis of implicit attitudes. Curr Dir Psychol Sci 17(2):164–170CrossRefGoogle Scholar
  33. 33.
    Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12(2):241–268CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100(6):3328–3342CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Renner F, Siep N, Lobbestael J, Arntz A, Peeters FP, Huibers MJ (2015) Neural correlates of self-referential processing and implicit self-associations in chronic depression. J Affect Disord 186:40–47CrossRefPubMedGoogle Scholar
  36. 36.
    Cunningham WA, Johnson MK, Raye CL, Gatenby JC, Gore JC, Banaji MR (2004) Separable neural components in the processing of black and white faces. Psychol Sci 15(12):806–813CrossRefPubMedGoogle Scholar
  37. 37.
    Mier D, Witthöft M, Bailer J, Ofer J, Kerstner T, Rist F, Diener C (2016) Cough is dangerous: neural correlates of implicit body symptoms associations. Front Psychol 7:247CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mier D, Bailer J, Ofer J, Kerstner T, Zamoscik V, Rist F, Witthöft M, Diener C (2017) Neural correlates of an attentional bias to health-threatening stimuli in individuals with pathological health anxiety. J Psychiatry Neurosci 42(3):200–209CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    van den Heuvel OA, Veltman DJ, Groenewegen HJ, Witter MP, Merkelbach J, Cath DC, van Balkom AJ, van Oppen P, van Dyck R (2005) Disorder-specific neuroanatomical correlates of attentional bias in obsessive-compulsive disorder, panic disorder, and hypochondriasis. Arch Gen Psychiatry 62(8):922–933CrossRefPubMedGoogle Scholar
  40. 40.
    Bailer J, Kerstner T, Witthöft M, Diener C, Mier D, Rist F (2016) Health anxiety and hypochondriasis in the light of DSM-5. Anxiety Stress Coping 29(2):219–239CrossRefPubMedGoogle Scholar
  41. 41.
    Kerstner T, Witthöft M, Mier D, Diener C, Rist F, Bailer J (2015) A diary-based modification of symptom attributions in pathological health anxiety: effects on symptom report and cognitive biases. J Consult Clin Psychol 83(3):578–589CrossRefPubMedGoogle Scholar
  42. 42.
    First MB, Spitzer RL, Gibbon M, Williams JB (1995) Structured clinical interview for DSM-IV axis I disorders. New York State Psychiatric Institute, New YorkGoogle Scholar
  43. 43.
    World Health Organization (1998) Schedules for clinical assessment in neuropsychiatry (SCAN), Version 2.1. World Health Organization, GenevaGoogle Scholar
  44. 44.
    Hiller W, Rief W, Fichter M (2002) Dimensional and categorical approaches to hypochondriasis. Psychol Med 32(04):707–718CrossRefPubMedGoogle Scholar
  45. 45.
    Hiller W, Rief W (2004) Internationale Skalen für Hypochondrie: deutschsprachige Adaption des Whiteley-Index (WI) und Illness Attitude Scales (IAS). Verlag Hans HuberGoogle Scholar
  46. 46.
    Kroenke K, Spitzer RL (2002) The PHQ-9: a new depression diagnostic and severity measure. Psychiatr Ann 32(9):509–515CrossRefGoogle Scholar
  47. 47.
    Kroenke K, Spitzer RL, Williams JB (2002) The PHQ-15: validity of a new measure for evaluating the severity of somatic symptoms. Psychosom Med 64(2):258–266CrossRefPubMedGoogle Scholar
  48. 48.
    Greenwald AG, Nosek BA, Banaji MR (2003) Understanding and using the implicit association test: I. An improved scoring algorithm. J Pers Soc Psychol 85(2):197–216CrossRefPubMedGoogle Scholar
  49. 49.
    Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8(4):170–177CrossRefPubMedGoogle Scholar
  50. 50.
    Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM (2010) The role of the right inferior frontal gyrus: inhibition and attentional control. NeuroImage 50(3):1313–1319CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bolognini N, Maravita A (2007) Proprioceptive alignment of visual and somatosensory maps in the posterior parietal cortex. Curr Biol 17(21):1890–1895CrossRefPubMedGoogle Scholar
  52. 52.
    Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Koenigs M, Barbey AK, Postle BR, Grafman J (2009) Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci 29(47):14980–14986CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Caspers S, Eickhoff SB, Rick T, von Kapri A, Kuhlen T, Huang R, Shah NJ, Zilles K (2011) Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques. NeuroImage 58(2):362–380CrossRefPubMedGoogle Scholar
  55. 55.
    Iacoboni M (2005) Understanding others: imitation, language, empathy. Perspect Imit Cogn Neurosci Soc Sci 1:77–99Google Scholar
  56. 56.
    Barbey AK, Koenigs M, Grafman J (2013) Dorsolateral prefrontal contributions to human working memory. Cortex 49(5):1195–1205CrossRefPubMedGoogle Scholar
  57. 57.
    Fedorenko E, Duncan J, Kanwisher N (2013) Broad domain generality in focal regions of frontal and parietal cortex. Proc Natl Acad Sci 110(41):16616–16621CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Harding IH, Yücel M, Harrison BJ, Pantelis C, Breakspear M (2015) Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory. NeuroImage 106:144–153CrossRefPubMedGoogle Scholar
  59. 59.
    Dolan RJ, Vuilleumier P (2003) Amygdala automaticity in emotional processing. Ann N Y Acad Sci 985(1):348–355CrossRefPubMedGoogle Scholar
  60. 60.
    Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6(1):57–77CrossRefPubMedGoogle Scholar
  61. 61.
    Ciaramelli E, Grady C, Levine B, Ween J, Moscovitch M (2010) Top-down and bottom-up attention to memory are dissociated in posterior parietal cortex: neuroimaging and neuropsychological evidence. J Neurosci 30(14):4943–4956CrossRefPubMedGoogle Scholar
  62. 62.
    Smith SD, Bulman-Fleming MB (2005) An examination of the right-hemisphere hypothesis of the lateralization of emotion. Brain Cogn 57(2):210–213CrossRefPubMedGoogle Scholar
  63. 63.
    Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213(1–2):93–118CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zink CF, Pagnoni G, Martin ME, Dhamala M, Berns GS (2003) Human striatal response to salient nonrewarding stimuli. J Neurosci 23(22):8092–8097PubMedGoogle Scholar
  65. 65.
    Phan KL, Wager TD, Taylor SF, Liberzon I (2004) Functional neuroimaging studies of human emotions. CNS Spectr 9(04):258–266CrossRefPubMedGoogle Scholar
  66. 66.
    Besson C, Louilot A (1995) Asymmetrical involvement of mesolimbic dopaminergic neurons in affective perception. Neuroscience 68(4):963–968CrossRefPubMedGoogle Scholar
  67. 67.
    De Houwer J, Teige-Mocigemba S, Spruyt A, Moors A (2009) Implicit measures: a normative analysis and review. Psychol Bull 135(3):347–368CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zhimin Yan
    • 1
  • Michael Witthöft
    • 2
  • Josef Bailer
    • 1
  • Carsten Diener
    • 3
    • 4
  • Daniela Mier
    • 1
  1. 1.Department of Clinical PsychologyCentral Institute of Mental HealthMannheimGermany
  2. 2.Department of Clinical Psychology, Psychotherapy, and Experimental PsychopathologyJohannes Gutenberg University of MainzMainzGermany
  3. 3.Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
  4. 4.School of Applied PsychologySRH University of Applied SciencesHeidelbergGermany

Personalised recommendations