A spectroscopic approach toward depression diagnosis: local metabolism meets functional connectivity

  • Liliana Ramona Demenescu
  • Lejla Colic
  • Meng Li
  • Adam Safron
  • B. Biswal
  • Coraline Danielle Metzger
  • Shijia Li
  • Martin Walter
Original Paper

Abstract

Abnormal anterior insula (AI) response and functional connectivity (FC) is associated with depression. In addition to clinical features, such as severity, AI FC and its metabolism further predicted therapeutic response. Abnormal FC between anterior cingulate and AI covaried with reduced glutamate level within cingulate cortex. Recently, deficient glial glutamate conversion was found in AI in major depression disorder (MDD). We therefore postulate a local glutamatergic mechanism in insula cortex of depressive patients, which is correlated with symptoms severity and itself influences AI’s network connectivity in MDD. Twenty-five MDD patients and 25 healthy controls (HC) matched on age and sex underwent resting state functional magnetic resonance imaging and magnetic resonance spectroscopy scans. To determine the role of local glutamate–glutamine complex (Glx) ratio on whole brain AI FC, we conducted regression analysis with Glx relative to creatine (Cr) ratio as factor of interest and age, sex, and voxel tissue composition as nuisance factors. We found that in MDD, but not in HC, AI Glx/Cr ratio correlated positively with AI FC to right supramarginal gyrus and negatively with AI FC toward left occipital cortex (p < 0.05 family wise error). AI Glx/Cr level was negatively correlated with HAMD score (p < 0.05) in MDD patients. We showed that the local AI ratio of glutamatergic–creatine metabolism is an underlying candidate subserving functional network disintegration of insula toward low level and supramodal integration areas, in MDD. While causality cannot directly be inferred from such correlation, our finding helps to define a multilevel network of response-predicting regions based on local metabolism and connectivity strength.

Keywords

Insula Glutamatergic metabolism Functional connectivity Depression Resting state 

References

  1. 1.
    Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, Vos T, Whiteford HA (2013) Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLOS Med. doi:10.1371/journal.pmed.1001547 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Zeng LL, Shen H, Liu L, Wang L, Li B, Fang P, Zhou Z, Li Y, Hu D (2012) Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain 135:1498–1507. doi:10.1093/brain/aws059 CrossRefPubMedGoogle Scholar
  3. 3.
    Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA (2015) Large-scale network dysfunction in major depressive disorder a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72:603–611. doi:10.1001/jamapsychiatry.2015.0071 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL, Martin CC, Jl Lancaster, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156:675–682PubMedGoogle Scholar
  5. 5.
    Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ (2007) Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci 27:8877–8884CrossRefPubMedGoogle Scholar
  6. 6.
    Almeida JRC, Versace A, Mechelli A, Hassel S, Quevedo K, Kupfer DJ, Phillips ML (2009) Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biol Psychiatry 66:451–459CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wiebking C, De Greck M, Duncan NW, Tempelmann C, Bajbouj M, Northoff G (2015) Interoception in insula subregions as a possible state marker for depression—an exploratory fMRI study investigating healthy, depressed and remitted participants. Front Behav Neurosci. doi:10.3389/fnbeh.2015.00082 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bonelli RM, Cummings JL (2007) Frontal-subcortical circuitry and behavior. Dialog Clin Neurosci 9:141–151Google Scholar
  9. 9.
    Disner SG, Beevers CG, Haigh EA, Beck AT (2011) Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci 12:467–477CrossRefPubMedGoogle Scholar
  10. 10.
    Lui S, Wu Q, Qiu L, Yang X, Kuang W, Chan RC, Huang X, Kemp GJ, Mechelli A, Gong Q (2011) Resting-state functional connectivity in treatment-resistant depression. Am J Psychiatry 168:642–648. doi:10.1176/appi.ajp.2010.10101419 CrossRefPubMedGoogle Scholar
  11. 11.
    Tang Y, Kong L, Wu F, Womer F, Jiang W, Cao Y, Ren L, Wang J, Fan G, Blumberg HP, Xu K, Wang F (2013) Decreased functional connectivity between the amygdala and the left ventral prefrontal cortex in treatment-naive patients with major depressive disorder: a resting-state functional magnetic resonance imaging study. Psychol Med 43:1921–1927. doi:10.1017/S0033291712002759 CrossRefPubMedGoogle Scholar
  12. 12.
    Avery JA, Drevets WC, Moseman SE, Bodurka J, Barcalow JC, Simmons WK (2014) Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biol Psychiatry 76:258–266CrossRefPubMedGoogle Scholar
  13. 13.
    Sprengelmeyer R, Steele JD, Mwangi B, Kumar P, Christmas D, Milders M, Matthews K (2011) The insular cortex and the neuroanatomy of major depression. J Affect Disord 133:120–127. doi:10.1016/j.jad.2011.04.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Qi H, Ning Y, Li J, Guo S, Chi M, Gao M, Chi M, Gao M, Guo Y, Yang Y, Peng H, Wu K (2014) Gray matter volume abnormalities in depressive patients with and without anxiety disorders. Medicine 93:e345. doi:10.1097/MD.0000000000000345 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Surguladze SA, El-Hage W, Dalgleish T, Radua J, Gohier B, Phillips ML (2010) Depression is associated with increased sensitivity to signals of disgust: a functional magnetic resonance imaging study. J Psychiatr Res 44:894–902. doi:10.1016/j.jpsychires.2010.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Demenescu LR, Renken R, Kortekaas R, van Tol MJ, Marsman JBC, Van Buchem MA, van der Wee NJ, Veltman DJ, den Boer JA, Aleman A (2011) Neural correlates of perception of emotional facial expressions in out-patients with mild-to-moderate depression and anxiety. A multicenter fMRI study. Psychol Med 41:2253–2264. doi:10.1017/S0033291711000596 CrossRefPubMedGoogle Scholar
  17. 17.
    Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH (2012) Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. Am J Psychiatry 169:693–703CrossRefPubMedGoogle Scholar
  18. 18.
    Sliz D, Hayley S (2012) Major depressive disorder and alterations in insular cortical activity: a review of current functional magnetic imaging research. Front Hum Neurosci. doi:10.3389/fnhum.2012.00323 PubMedPubMedCentralGoogle Scholar
  19. 19.
    Fitzgerald PB, Lair AR, Maller J, Daskalakis ZJ (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29:683–695CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yao Z, Wang L, Lu Q, Liu H, Teng G (2009) Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study. J Affect Disord 115:430–438. doi:10.1016/j.jad.2008.10.013 CrossRefPubMedGoogle Scholar
  21. 21.
    Liu Z, Xu C, Xu Y, Wang Y, Zhao B, Lv Y, Cao X, Zhang K, Du C (2010) Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res 182:211–215. doi:10.1016/j.pscychresns.2010.03.004 CrossRefPubMedGoogle Scholar
  22. 22.
    Su L, Cai Y, Xu Y, Dutt A, Shi S, Bramon E (2014) Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry 14:321. doi:10.1186/s12888-014-0321-9 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Veer IM, Beckmann CF, Van Tol MJ, Ferrarini L, Milles J, Veltman DJ, Aleman A, van Buchem MA, van der Wee NJ, Rombouts SARB (2010) Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front Syst Neurosci. doi:10.3389/fnsys.2010.00041 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Tao H, Guo S, Ge T, Kendrick KM, Xue Z, Liu Z, Feng J (2013) Depression uncouples brain hate circuit. Mol Psychiatry 18:101–111. doi:10.1038/mp.2011.127 CrossRefPubMedGoogle Scholar
  25. 25.
    Crowther A, Smosk MJ, Minke J, Moor T, Gibb D, Petty C, Bizzell J, Schiller CE, Sideris J, Carl H, Dichter GS (2015) Resting-state connectivity predictors of response to psychotherapy in major depressive disorder. Neuropsychopharmacology 40:1659–1673. doi:10.1038/npp.2015.12 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Craddock RC, Holtzheimer PE, Hu XP, Mayberg HS (2009) Disease state prediction from resting state functional connectivity. Magn Reson Med 62:1619–1628. doi:10.1002/mrm.22159 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lord A, Horn D, Breakspear M, Walter M (2012) Changes in community structure of resting state functional connectivity in unipolar depression. PLoS One 7(8):e41282. doi:10.1371/journal.pone.0041282 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    McGrath CL, Kelley ME, Holtzheimer PE, Dunlop BW, Craighead WE, Franco AR, Craddoch RC, Mayberg HS (2013) Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 70:821–829. doi:10.1001/jamapsychiatry.2013.143 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Delaveau P, Jabourian M, Lemogne C, Guionnet S, Bergouignan L, Fossati P (2011) Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord 130:66–74CrossRefPubMedGoogle Scholar
  30. 30.
    Opmeer EM, Kortekaas R, van Tol MJ, Renken RJ, Demenescu LR, Woudstra S, Ter Horst GJ, van Buchem MA, van der Wee NJA, Vetlman DJ, Aleman A (2016) Changes in regional brain activation related to depressive state: a 2-year longitudinal functional MRI study. Depress Anxiety 33:35–44. doi:10.1002/da.22425 CrossRefPubMedGoogle Scholar
  31. 31.
    Tomasi D, Wan G-J, Volkow ND (2013) Energetic cost of brain functional connectivity. PNAS 110:13642–13647. doi:10.1073/pnas.1303346110 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lord LD, Expert P, Huckins JF, Turkheimer FE (2013) Cerebral energy metabolism and the brain’s functional network architecture: an integrative review. J Cereb Blood Flow Metab 33:1347–1354. doi:10.1038/jcbfm.2013.94 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Taylor MJ (2014) Could glutamate spectroscopy differentiate bipolar depression from unipolar? J Affect Disord 167:80–84. doi:10.1016/j.jad.2014.05.019 CrossRefPubMedGoogle Scholar
  34. 34.
    Yüksel C, Öngür D (2010) Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 68:785–794. doi:10.1016/j.biopsych.2010.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li M, Metzge CD, Li W, Safron A, van Tol MJ, Lord A, Krause AL, Borchardt V, Dou W, Genz A, Heinze HJ, He H, Walter M (2014) Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder. J Affect Disord 169:91–100. doi:10.1016/j.jad.2014.08.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Banasr M, Chowdhury GMI, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 15:501–511CrossRefPubMedGoogle Scholar
  38. 38.
    Maeng S, Zarate CA Jr (2007) The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep 9:467–474CrossRefPubMedGoogle Scholar
  39. 39.
    Salvadore G, van der Veen JW, Zhang Y, Marenco S, Machado-Vieira R, Baumann J, Ibrahim LA, Luckenbaugh DA, Shen J, Drevets WC, Zarate CA (2012) An investigation of amino-acid neurotransmitters as potential predictors of clinical improvement to ketamine in depression. Int J Neuropsychopharmacol 15:1063–1072. doi:10.1017/S1461145711001593 CrossRefPubMedGoogle Scholar
  40. 40.
    Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG, Renshaw PF, Öngür D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35:834–846. doi:10.1038/npp.2009.191 CrossRefPubMedGoogle Scholar
  41. 41.
    Bernstein HG, Meyer-Lotz G, Dobrowolny H, Bannier J, Steiner J, Walter M, Bogerts B (2015) Glutamine synthetase related astroglial abnormalities in different cortical areas in major depression but not in bipolar I disorder. Front Cell Neurosci. doi:10.3389/fncel.2015.00273 Google Scholar
  42. 42.
    Gu X, Hof PR, Friston KJ, Fan J (2013) Anterior insular cortex and emotional awareness. J Comp Neurol 521:3371–3388CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut KC, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010) Glutamatergic and resting-state functional connectivity correlates of severity in major depression–the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci. doi:10.3389/fnsys.2010.00033 PubMedPubMedCentralGoogle Scholar
  44. 44.
    Wiebking C, Duncan NW, Tiret B, Hayes DJ, Marjaǹska M, Doyon J, Bajbouj M, Northoff G (2014) GABA in the insula—a predictor of the neural response to interoceptive awareness. Neuroimage 86:10–18. doi:10.1016/j.neuroimage.2013.04.042 CrossRefPubMedGoogle Scholar
  45. 45.
    Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, Boeker H, Grimm S, Boesiger P (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10:1515–1517. doi:10.1038/nn2001 CrossRefPubMedGoogle Scholar
  46. 46.
    Walter M, Henning A, Grimm S, Schult RF, Bec J, Dyda U, Schnepf B, Boeker H, Boesiger P, Northoff G (2009) The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 66:478–486CrossRefPubMedGoogle Scholar
  47. 47.
    Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The mini-international neuropsychiatric interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–33PubMedGoogle Scholar
  48. 48.
    CIPS (1996) Internationale Skalen für Psychiatrie. Beltz Test GmbH, GöttingenGoogle Scholar
  49. 49.
    Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. doi:10.3389/fnsys.2010.00013 PubMedPubMedCentralGoogle Scholar
  50. 50.
    Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6:e25031. doi:10.1371/journal.pone.0025031 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341CrossRefPubMedGoogle Scholar
  53. 53.
    Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142–2154. doi:10.1016/j.neuroimage.2011.10.018 CrossRefPubMedGoogle Scholar
  54. 54.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679. doi:10.1002/mrm.1910300604 CrossRefPubMedGoogle Scholar
  55. 55.
    Cavassila S, Deval S, Huegen C, Van Ormondt D, Graveron-Demilly D (2001) Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14:278–283. doi:10.1002/nbm.701 CrossRefPubMedGoogle Scholar
  56. 56.
    Soher BJ, van Zijl PC, Duyn JH, Barker PB (1996) Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 35:356–363CrossRefPubMedGoogle Scholar
  57. 57.
    Uitenbroek DG (1997) SISA Binomial. Southampton: D.G. Uitenbroek. Retrieved January 01, 2014, from the World Wide Web: http://www.quantitativeskills.com/sisa/distributions/binomial.htm
  58. 58.
    Allen PJ (2012) Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 36:1442–1462. doi:10.1016/j.neubiorev.2012.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Frye MA, Watzl J, Banakar S, O’Neill J, Mintz J, Davanzo P, Fischer J, Chirichigno JW, Ventura J, Elman S, Tsuang J, Walot I, Tsuang J (2007) Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology 32:2490–2499. doi:10.1038/sj.npp.1301387 CrossRefPubMedGoogle Scholar
  60. 60.
    Arnone D, Mumuni AN, Jauhar S, Condon B, Cavanagh J (2015) Indirect evidence of selective glial involvement in glutamate-based mechanisms of mood regulation in depression: meta-analysis of absolute prefrontal neuro-metabolic concentrations. Eur Neuropsychopharmacol 25:1109–1117. doi:10.1016/j.euroneuro.2015.04.016 CrossRefPubMedGoogle Scholar
  61. 61.
    Furey ML, Drevets WC, Hoffman EM, Frankel E, Speer AM, Zarate CA (2013) Potential of pretreatment neural activity in the visual cortex during emotional processing to predict treatment response to scopolamine in major depressive disorder. JAMA Psychiatry 70:280–290. doi:10.1001/2013.jamapsychiatry.60 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Borchardt V, Krause AL, Starck T, Nissilä J, Timonen M, Kiviniemi V, Walter M (2015) Graph theory reveals hyper-functionality in visual cortices of seasonal affective disorder patients. World J Biol Psychiatry 16:123–134. doi:10.3109/15622975.2014.966144 CrossRefPubMedGoogle Scholar
  63. 63.
    Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Rev 22:229–244CrossRefPubMedGoogle Scholar
  64. 64.
    Cerliani L, Thomas RM, Jbabdi S, Siero JCW, Nanetti L, Crippa A, Gazzola V, D’Arceuil H, Keysers C (2012) Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex. Hum Brain Mapp 33:2005–2034. doi:10.1002/hbm.21338 CrossRefPubMedGoogle Scholar
  65. 65.
    Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667. doi:10.1007/s00429-010-0262-0 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Uddin LQ (2014) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61. doi:10.1038/nrn3857 CrossRefPubMedGoogle Scholar
  67. 67.
    Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A (2011) Functional connectivity of the insula in the resting brain. Neuroimage 55:8–23CrossRefPubMedGoogle Scholar
  68. 68.
    Nelson SM, Dosenbach NU, Cohen AL, Wheeler ME, Schlaggar BL, Petersen SE (2010) Role of the anterior insula in task-level control and focal attention. Brain Struct Funct 214:669–680. doi:10.1007/s00429-010-0260-2 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ai H, Opmeer EM, Veltman DJ, van der Wee NJ, van Buchem MA, Aleman A, van Tol MJ (2015) Brain activation during emotional memory processing associated with subsequent course of depression. Neuropsychopharmacology 40:2454–2463. doi:10.1038/npp.2015.96 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yuen GS, Gunning-Dixon FM, Hoptman MJ, AbdelMalak B, McGovern AR, Seirup JK, Alexopoulos GS (2014) The salience network in the apathy of late-life depression. Int J Geriatr Psychiatry 29:1116–1124. doi:10.1002/gps.4171 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660CrossRefPubMedGoogle Scholar
  72. 72.
    Souery D, Oswald P, Massat I, Bailer U, Bollen J, Demyttenaere K, Kasper S, Lecrubier Y, Montgomery S, Serretti A, Zohar J, Mendlewicz J (2007) Clinical factors associated with treatment resistance in major depressive disorder: results from a European multicenter study. J Clin Psychiatry 68:1062–1070CrossRefPubMedGoogle Scholar
  73. 73.
    Schubert F, Gallinat J, Seifert F, Rinneberg H (2004) Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 T. Neuroimage 21:1762–1771. doi:10.1016/j.neuroimage.2003.11.014 CrossRefPubMedGoogle Scholar
  74. 74.
    Dou W, Kaufmann J, Li M, Zhong K, Walter M, Speck O (2015) The separation of Gln and Glu in STEAM: a comparison study using short and long TEs/TMs at 3 and 7 T. Magn Reson Mater Phys Biol Med 28:395–405. doi:10.1007/s10334-014-0479-7 CrossRefGoogle Scholar
  75. 75.
    Dou W, Palomero-Gallagher N, van Tol M-J, Kaufmann J, Zhong K, Bernstein H-G, Heinze H-J, Speck O, Walter M (2013) Systematic regional variations of GABA, Gln and Glu concentrations follow receptor fingerprints of human cingulate cortex. J Neurosci 33:12698–12704. doi:10.1523/JNEUROSCI.1758-13.2013 CrossRefPubMedGoogle Scholar
  76. 76.
    van der Meer JN, Pampel A, Van Someren EJW, Ramautar JR, van der Werf YD, Gomez-Herrero G, Lepsien J, Hellrung L, Hinrichs H, Möller HE, Walter M (2016) Carbon-wire loop based artefact correction outperforms post-processing EEG/fMRI corrections—a validation of a real-time simultaneous EEG/fMRI correction method. Neuroimage 125:880–894. doi:10.1016/j.neuroimage.2015.10.064 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Liliana Ramona Demenescu
    • 1
    • 2
  • Lejla Colic
    • 1
    • 3
  • Meng Li
    • 1
    • 2
  • Adam Safron
    • 8
  • B. Biswal
    • 9
  • Coraline Danielle Metzger
    • 4
    • 5
    • 6
    • 7
  • Shijia Li
    • 1
    • 3
    • 4
    • 10
    • 11
  • Martin Walter
    • 1
    • 2
    • 3
    • 4
    • 5
    • 12
  1. 1.Clinical Affective Neuroimaging LaboratoryMagdeburgGermany
  2. 2.Department of NeurologyOtto von Guericke UniversityMagdeburgGermany
  3. 3.Department of Behavioral NeurologyLeibniz Institute for NeurobiologyMagdeburgGermany
  4. 4.Department of Psychiatry and PsychotherapyOtto von Guericke University of MagdeburgMagdeburgGermany
  5. 5.Center for Behavioral Brain SciencesMagdeburgGermany
  6. 6.Institute of Cognitive Neurology and Dementia Research (IKND)MagdeburgGermany
  7. 7.German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
  8. 8.Department of PsychologyNorthwestern UniversityEvanstonUSA
  9. 9.Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkUSA
  10. 10.School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
  11. 11.Key Laboratory of Brain Functional Genomics, Ministry of EducationShanghai Key Laboratory of Brain Functional GenomicsShanghaiChina
  12. 12.Department of PsychiatryUniversity of TuebingenTuebingenGermany

Personalised recommendations